diisononyl-phthalate and Disease-Models--Animal

diisononyl-phthalate has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for diisononyl-phthalate and Disease-Models--Animal

ArticleYear
Exposure to diisononyl phthalate promotes atopic march by activating of NF-κB and p38 MAPK.
    Toxicology and applied pharmacology, 2020, 05-15, Volume: 395

    What factors and underlying mechanisms influence the occurrence of the atopic march remain unclear. Recent studies suggest that exposure to diisononyl phthalate (DINP) might be associated with the occurrence of atopic dermatitis (AD) and asthma. However, little is known about the role of DINP exposure in the atopic march. In this study, we investigated the effect of DINP exposure on the progression from AD to asthma, and explored the potential mechanisms. We built an atopic march mouse model from AD to asthma, by exposure to DINP and sensitization with OVA. Pyrrolidine dithiocarbamate and SB203580 were used to block NF-κB and p38 MAPK respectively, to explore the possible molecular mechanisms. The data showed that DINP aggravated airway remodeling and airway hyperresponsiveness (AhR) in the progression from AD to asthma, induced a sharp increase in IL-33, IgE, Th2 and Th17 cytokines, and resulted in an increase in the expression of thymic stromal lymphopoietin (TSLP) and in the number of inflammatory cells. Blocking NF-κB inhibited AD-like lesions, and the production of IL-33 and TSLP in the progression of AD, while alleviating airway remodeling, AhR, and the expression of Th2 and Th17 cytokines in both the progression of AD and the asthmatic phenotype. Blocking p38 MAPK in the progression of asthma, inhibited airway remodeling, AhR, and the expression of Th2 and Th17 cytokines. The results demonstrated that exposure to DINP enhanced the immune response to memory CD4

    Topics: Airway Remodeling; Animals; Asthma; Cytokines; Dermatitis, Atopic; Disease Models, Animal; Disease Progression; Enzyme Activation; Hypersensitivity, Immediate; Male; Mice; Mice, Inbred BALB C; NF-kappa B; Ovalbumin; p38 Mitogen-Activated Protein Kinases; Phthalic Acids; Respiratory Hypersensitivity; Signal Transduction; Specific Pathogen-Free Organisms; Th17 Cells; Th2 Cells; Thymic Stromal Lymphopoietin

2020
Exposure to formaldehyde and diisononyl phthalate exacerbate neuroinflammation through NF-κB activation in a mouse asthma model.
    Ecotoxicology and environmental safety, 2018, Nov-15, Volume: 163

    Diisononyl phthalate (DINP) and formaldehyde both are associated with asthma and allergies. However, it is unclear about the adverse effect of DINP and formaldehyde exposure on the brain for asthma patients. Here, we determined the effect of DINP and/or formaldehyde exposure on neuroinflammation in brain by a murine asthma model and investigated the underlying mechanisms. Mice were exposed to formaldehyde and/or DINP and sensitization with ovalbumin. The results show that exposure to formaldehyde and/or DINP not only exacerbated allergic asthma-like symptoms, but also promoted neuroinflammation in brain. The incrassation of the airway wall and exacerbation of neuroinflammation were more obviously when mice were subjected to a combined exposure to DINP and formaldehyde. Exposure to DINP and/or formaldehyde enhances oxidative stress and the activation of NF-κB in the prefrontal cortex of mouse asthma model. Exposure to DINP and/or formaldehyde also induced an increase in IL-1β, IL-17, and NGF. Blocking oxidative stress by administering melatonin or inhibiting NF-κB activation by treatment with Dehydroxymethylepoxyquinomicin effectively prevented increasing the levels IL-1β, IL-17 and nerve growth factor. The data indicated that DINP and/or formaldehyde exposure promoted neuroinflammation in the brain through enhanced oxidative stress and activation of NF-κB in a mouse asthma model.

    Topics: Animals; Asthma; Disease Models, Animal; Encephalitis; Formaldehyde; Gene Expression Regulation; Interleukin-17; Interleukin-1beta; Male; Mice; Mice, Inbred BALB C; Nerve Growth Factor; NF-kappa B; Ovalbumin; Oxidative Stress; Phthalic Acids; Prefrontal Cortex; Respiratory Hypersensitivity; Signal Transduction

2018
TRPA1 mediated aggravation of allergic contact dermatitis induced by DINP and regulated by NF-κB activation.
    Scientific reports, 2017, 02-27, Volume: 7

    The possible pathogenic role and mechanism of Di-iso-nonyl phthalate (DINP) in allergic dermatitis is still controversial. This work has shown that oral exposure to DINP exacerbated allergic dermatitis tissue lesions in FITC-sensitized mice. The lesions was accompanied by an enhancement of TRPA1 expression and an increase in IgG1, IL-6 and IL-13 levels. This work also found that blocking TRPA1 by HC030031 effectively prevented the development of allergic dermatitis resulting from oral exposure to DINP and/or FITC-sensitized mice. This result is marked by the down regulation of IgG1 levels, a reduction in mast cell degranulation and a decrease in IL-6 and IL-13 levels. We also showed that blocking NF-κB inhibited TRPA1 expression, and that blocking TRPA1 had no significant effect on the activation of NF-κB or TSLP expression. This study helps in understanding the role DINP exposure plays in the development of allergic dermatitis and provides new insight into the mechanisms behind the DINP-induced adjuvant effect.

    Topics: Acetanilides; Animals; Cell Degranulation; Dermatitis, Allergic Contact; Disease Models, Animal; Disease Progression; Gene Expression Regulation; Immunohistochemistry; Male; Mast Cells; Mice; NF-kappa B; Phthalic Acids; Purines; Signal Transduction; Th2 Cells; TRPA1 Cation Channel

2017
Diisononyl phthalate aggravates allergic dermatitis by activation of NF-kB.
    Oncotarget, 2016, Dec-20, Volume: 7, Issue:51

    Several epidemiological studies have suggested a possible link between exposure to Diisononyl phthalate (DINP) and the development of allergies. These findings remain controversial since there is insufficient scientific evidence to assess the ability of DINP to influence allergic immune responses. In addition, the mechanisms behind DINP-caused allergic diseases have not been fully elucidated. In this study, Balb/c mice were orally exposed to DINP for 3 weeks and were then sensitized with fluorescein isothiocyanate (FITC). We showed that oral exposure to DINP could aggravate allergic-dermatitis-like lesions, indicated by an increase in the number of mast cells, and in increased skin edema in FITC-induced contact hypersensitivity. This deterioration was concomitant with increased total serum immunoglobulin-E and Th2 cytokines. We determined the oxidative damage and the activation of nuclear factor-kb (NF-kB). The data demonstrated that DINP could promote oxidative damage and the activation of NF-kB in the skin. The expression of thymic stromal lymphopoietin and the activation of signal transducer and activator of transcriptions 3, 5 and 6 were enhanced concomitant with exacerbated allergic dermatitis effects and the activation of NF-kB induced by DINP. These effects were alleviated by pyrollidine dithiocarbamate, an inhibitor of NF-kB. The results suggest that oral exposure to DINP aggravated allergic contact dermatitis, which was positively regulated via NF-kB.

    Topics: Administration, Oral; Animals; Cytokines; Dermatitis, Allergic Contact; Disease Models, Animal; Dose-Response Relationship, Drug; Fluorescein-5-isothiocyanate; Immunoglobulin E; Male; Mice, Inbred BALB C; NF-kappa B; Oxidative Stress; Phthalic Acids; Pyrrolidines; Signal Transduction; Skin; STAT Transcription Factors; Th2 Cells; Thiocarbamates; Thymic Stromal Lymphopoietin

2016