dihydropyridines has been researched along with Carcinoma--Small-Cell* in 3 studies
3 other study(ies) available for dihydropyridines and Carcinoma--Small-Cell
Article | Year |
---|---|
Different effects of FK317 on multidrug-resistant tumor in vivo and in vitro.
FK317, a novel substituted dihydrobenzoxazine, was examined for antitumor effects on multidrug-resistant (MDR) tumor cells in vitro and in vivo. In nude mice, FK317 markedly inhibited the growth of s.c. implanted KB-V1 vinblastine (VLB)-resistant human epidermal carcinoma KB cells, as well as the parent cells (KB-3-1). However, KB-V1 showed much greater resistance to FK317 than to VLB and adriamycin (ADM) in the in vitro study. This resistance was reversed by the addition of verapamil, whereby intracellular accumulation of FK317 in the KB-V1 cells was also decreased. After incubation of FK317 in human and mouse blood, it was shown to be rapidly metabolized to a monodeacetylated form, and slowly metabolized further to a dideacetylated form. With the removal of the acetyl groups from FK317, resistance indexes in KB-V1 and SBC-3/ADM, ADM-resistant human lung carcinoma, decreased. In addition, photolabeling of P-glycoprotein with [3H]azidopine in KB-V1 plasma membrane was completely inhibited by FK317, but not by the deacetylated metabolites. These results indicate that FK317 is metabolized to deacetylated forms, which do not bind to P-glycoprotein and are incorporated into MDR cells, causing cytotoxic effects. Topics: Affinity Labels; Animals; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Azides; Biotransformation; Carcinoma, Small Cell; Cell Survival; Dihydropyridines; Drug Resistance, Multiple; Humans; KB Cells; Lung Neoplasms; Male; Mice; Mice, Nude; Nasopharyngeal Neoplasms; Oxazines; Transplantation, Heterologous; Tritium; Vinblastine | 1998 |
Inhibition of protein-kinase-C--dependent cell proliferation of human lung cancer cell lines by the dihydropyridine dexniguldipine.
The dihydropyridine, dexniguldipine hydrochloride (B859-35), has shown therapeutic activity in experimentally induced neuroendocrine hamster lung tumors and demonstrated antiproliferative effects in a mammary cancer cell line via inhibition of Ca2+ calmodulin. Studies in NIH 3T3 fibroblasts have provided evidence that dexniguldipine may also inhibit protein kinase C (PKC). In this study, we have tested the hypothesis that dexniguldipine may inhibit the proliferation of lung cancer cells in response to autocrine or exogenous activation of PKC. Using a panel of human lung cancer cell lines, we show that dexniguldipine is a potent inhibitor of mitogenic signal transduction pathways dependent on PKC activation in several small-cell and non-small-cell lung cancer cell lines while it failed to inhibit cyclic-AMP-dependent cell proliferation. Topics: Adenocarcinoma; Antineoplastic Agents; Carcinoid Tumor; Carcinoma, Adenosquamous; Carcinoma, Small Cell; Carcinoma, Squamous Cell; Cell Division; Dihydropyridines; Humans; Lung Neoplasms; Protein Kinase C; Tumor Cells, Cultured | 1994 |
Calcium channel subtypes controlling serotonin release from human small cell lung carcinoma cell lines.
Small cell lung carcinoma is an aggressive neuroendocrine tumor that secretes several hormones, some of which act as autocrine growth factors. In order to obtain more information on the process of hormone secretion from this tumor, we have studied the role of intracellular free Ca2+ concentrations and voltage-operated calcium channels in the control of [3H]serotonin release from in vitro growing cell lines. We found that the Ca2+ ionophore ionomycin and the Ca(2+)-ATPase antagonist thapsigargin induced a dose-dependent increase of intracellular Ca2+ and a parallel enhancement of [3H]serotonin release. KCl-induced depolarization also stimulated a dose- and Ca(2+)-dependent [3H]serotonin release that in the GLC8 cell line was effectively inhibited by Ca2+ channel antagonists (Cd2+, nitrendipine, verapamil, omega-conotoxin GVIA, and omega-agatoxin IVA) and potentiated by the Ca2+ channel agonist BayK8644. Autoantibodies against Ca2+ channels present in the sera of Lambert-Eaton myasthenic patients antagonized KCl- but not ionomycin-induced [3H]serotonin release. Polymerase chain reaction analysis indicated that GLC8 cells express L-, N-, and P-type neuronal Ca2+ channel alpha 1 subunits, together with two types of Ca2+ channel beta subunits. The presence of three functionally distinct high threshold Ca2+ channels was also revealed by patch clamp experiments; high threshold Ca2+ channels were identified as dihydropyridine-sensitive (L-type), omega-conotoxin GVIA-sensitive (N-type), and omega-agatoxin IVA-sensitive (P-type). Our data demonstrate that [3H]serotonin is released by small cell lung carcinoma cells in a Ca(2+)-dependent manner and that depolarization-induced [3H]serotonin release is mediated by Ca2+ influx through distinct, neuron-like, Ca2+ channel subtypes. Topics: Autoantibodies; Base Sequence; Calcium Channel Blockers; Calcium Channels; Calcium-Transporting ATPases; Carcinoma, Small Cell; Dihydropyridines; DNA Primers; Fura-2; Humans; Ionomycin; Lambert-Eaton Myasthenic Syndrome; Lung Neoplasms; Molecular Sequence Data; omega-Conotoxin GVIA; Peptides; Potassium Chloride; Serotonin; Terpenes; Thapsigargin; Tritium; Tumor Cells, Cultured | 1993 |