dihydroceramide and Non-alcoholic-Fatty-Liver-Disease

dihydroceramide has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 4 studies

Other Studies

4 other study(ies) available for dihydroceramide and Non-alcoholic-Fatty-Liver-Disease

ArticleYear
Role of ceramide-to-dihydroceramide ratios for insulin resistance and non-alcoholic fatty liver disease in humans.
    BMJ open diabetes research & care, 2020, Volume: 8, Issue:2

    Sphingolipid accumulation has been linked to obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). A recent study showed that depletion of dihydroceramide desaturase-1 (DES-1) in adipose and/or liver tissue decreases ceramide-to-dihydroceramide ratios (ceramide/dihydroceramide) in several tissues and improves the metabolic profile in mice. We tested the hypothesis that ceramide/dihydroceramide would also be elevated and relate positively to liver fat content and insulin resistance in humans.. Thus, we assessed total and specific ceramide/dihydroceramide in various biosamples of 7 lean and 21 obese volunteers without or with different NAFLD stages, who were eligible for abdominal or bariatric surgery, respectively. Biosamples were obtained from serum, liver, rectus abdominis muscle as well as subcutaneous abdominal and visceral adipose tissue during surgery.. Surprisingly, certain serum and liver ceramide/dihydroceramide ratios were reduced in both obesity and non-alcoholic steatohepatitis (NASH) and related inversely to liver fat content. Specifically, hepatic ceramide/dihydroceramide (species 16:0) related negatively to hepatic mitochondrial capacity and lipid peroxidation. In visceral adipose tissue, ceramide/dihydroceramide (species 16:0) associated positively with markers of inflammation.. These results failed to confirm the relationships of ceramide/dihydroceramide in humans with different degree of insulin resistance. However, the low hepatic ceramide/dihydroceramide favor a role for dihydroceramide accumulation in NASH, while a specific ceramide/dihydroceramide ratio in visceral adipose tissue suggests a role of ceramides in obesity-associated low-grade inflammation.

    Topics: Animals; Ceramides; Diabetes Mellitus, Type 2; Humans; Insulin Resistance; Mice; Non-alcoholic Fatty Liver Disease

2020
Dihydroceramides in Triglyceride-Enriched VLDL Are Associated with Nonalcoholic Fatty Liver Disease Severity in Type 2 Diabetes.
    Cell reports. Medicine, 2020, 12-22, Volume: 1, Issue:9

    Plasma dihydroceramides are predictors of type 2 diabetes and related to metabolic dysfunctions, but the underlying mechanisms are not characterized. We compare the relationships between plasma dihydroceramides and biochemical and hepatic parameters in two cohorts of diabetic patients. Hepatic steatosis, steatohepatitis, and fibrosis are assessed by their plasma biomarkers. Plasma lipoprotein sphingolipids are studied in a sub-group of diabetic patients. Liver biopsies from subjects with suspected non-alcoholic fatty liver disease are analyzed for sphingolipid synthesis enzyme expression. Dihydroceramides, contained in triglyceride-rich very-low-density lipoprotein (VLDL), are associated with steatosis and steatohepatitis. Expression of sphingolipid synthesis enzymes is correlated with histological steatosis and inflammation grades. In conclusion, association of plasma dihydroceramides with nonalcoholic fatty liver might explain their predictive character for type 2 diabetes. Our results suggest a relationship between hepatic sphingolipid metabolism and steatohepatitis and an involvement of dihydroceramides in the synthesis/secretion of triglyceride-rich VLDL, a hallmark of NAFLD and type 2 diabetes dyslipidemia.

    Topics: Ceramides; Diabetes Mellitus, Type 2; Humans; Insulin Resistance; Lipoproteins, VLDL; Liver; Non-alcoholic Fatty Liver Disease; Triglycerides

2020
Dihydroceramide is a key metabolite that regulates autophagy and promotes fibrosis in hepatic steatosis model.
    Biochemical and biophysical research communications, 2017, 12-16, Volume: 494, Issue:3-4

    Non-alcoholic fatty liver disease (NAFLD) is an increasingly common chronic liver disease worldwide. Sphingolipids are a family of lipids that play essential roles as critical regulators in metabolic disorders. Some sphingolipids are known key factors in metabolic dysfunction. However, the precise effect of dihydroceramide on NAFLD remains unknown. Here, we report how dihydroceramide in autophagosome accumulation activates fibrogenesis in human liver Chang cells treated with free fatty acids (FFA). According to LC/MS lipid profiling, FFA increased the levels of sphingolipids and triacylglycerol (TG). To demonstrate the potential role of dihydroceramide metabolism in autophagy, several sphingolipid synthesis inhibitors were used. Increased dihydroceramide led to impairment of autophagic flux, resulting in increased TG storage in lipid droplets (LD) and upregulated expression of fibrosis markers. Hepatic stellate cells (HSCs, LX-2 cells) were co-cultured with Chang cells to assess the potential fibrogenic response to dihydroceramide, Treatment with rapamycin recovered autophagic flux in Chang cells and fibrogenesis in the co-culture system. Our results identified a critical function of dihydroceramide metabolism in autophagy. It could play an important role in the progression of NAFLD associated with lipid over-accumulation. Therefore, preventing autophagic flux by regulating dihydroceramide could be a potential strategic approach for providing therapy for NAFLD.

    Topics: Autophagosomes; Autophagy; Cells, Cultured; Ceramides; Fatty Acids, Nonesterified; Gene Expression Regulation; Humans; Lipid Droplets; Liver Cirrhosis; Non-alcoholic Fatty Liver Disease

2017
Serum acid sphingomyelinase is upregulated in chronic hepatitis C infection and non alcoholic fatty liver disease.
    Biochimica et biophysica acta, 2014, Volume: 1841, Issue:7

    Sphingolipids constitute bioactive molecules with functional implications in homeostasis and pathogenesis of various diseases. However, the role of sphingolipids as possible disease biomarkers in chronic liver disease remains largely unexplored. In the present study we used mass spectrometry and spectrofluorometry methods in order to quantify various sphingolipid metabolites and also assess the activity of an important corresponding regulating enzyme in the serum of 72 healthy volunteers as compared to 69 patients with non-alcoholic fatty liver disease and 69 patients with chronic hepatitis C virus infection. Our results reveal a significant upregulation of acid sphingomyelinase in the serum of patients with chronic liver disease as compared to healthy individuals (p<0.001). Especially in chronic hepatitis C infection acid sphingomyelinase activity correlated significantly with markers of hepatic injury (r=0.312, p=0.009) and showed a high discriminative power. Accumulation of various (dihydro-) ceramide species was identified in the serum of patients with non-alcoholic fatty liver disease (p<0.001) and correlated significantly to cholesterol (r=0.448, p<0.001) but showed a significant accumulation in patients with normal cholesterol values as well (p<0.001). Sphingosine, a further bioactive metabolite, was also upregulated in chronic liver disease (p<0.001). However, no significant correlation to markers of hepatic injury was identified.. Chronic hepatitis C virus infection and non-alcoholic fatty liver disease induce a significant upregulation of serum acid sphingomyelinase which appears as a novel biomarker in chronic hepatopathies. Further studies are required to elucidate the potential of the sphingolipid signaling pathway as putative therapeutic target in chronic liver disease.

    Topics: Adult; Aged; Aged, 80 and over; Biomarkers; Case-Control Studies; Ceramides; Fatty Liver; Female; Gene Expression Regulation; Hepacivirus; Hepatitis C, Chronic; Humans; Liver; Male; Middle Aged; Non-alcoholic Fatty Liver Disease; Signal Transduction; Sphingomyelin Phosphodiesterase; Sphingosine

2014