dihydroceramide has been researched along with Fatty-Liver* in 3 studies
3 other study(ies) available for dihydroceramide and Fatty-Liver
Article | Year |
---|---|
Liraglutide reduces plasma dihydroceramide levels in patients with type 2 diabetes.
Emerging evidence supports that dihydroceramides (DhCer) and ceramides (Cer) contribute to the pathophysiology of insulin resistance and liver steatosis, and that their circulating concentrations are independently associated with cardiovascular outcomes. Circulating DhCer levels are increased in patients with type 2 diabetes (T2D). On the other hand, the GLP-1 receptor agonist liraglutide reduces major adverse cardiac events, insulin resistance and liver steatosis in T2D patients. The main purpose of the present study was therefore to investigate whether liraglutide decreases circulating levels of DhCer and Cer in T2D patients, which could be a mechanism involved in its cardiometabolic benefits. The secondary purpose was to assess the relationship between liraglutide-induced changes in DhCer/Cer levels and insulin resistance and liver steatosis.. Plasma concentrations of 11 DhCer and 15 Cer species were measured by a highly-sensitive mass spectrometry system in 35 controls and 86 T2D patients before and after 6 months of liraglutide (1.2 mg/day). Insulin resistance was estimated by the triglyceride-glucose (TyG) index. Liver fat content (LFC) was assessed in 53 patients by proton magnetic resonance spectroscopy.. Plasma levels of total DhCer, 7 DhCer and 7 Cer species were increased in T2D patients compared to controls. Liraglutide decreased total DhCer by 15.1% (p = 0.005), affecting 16:0 (p = 0.037), 18:0 (p < 0.0001), 18:1 (p = 0.0005), 20:0 (p = 0.0003), 23:0 (p = 0.005) and 24:1 (p = 0.04) species. Total plasma Cer did not significantly change after liraglutide (p = 0.18), but 5 Cer species decreased significantly, i.e. 18:0 and 18:1 (both p < 0.0001), 19:0 and 24:1 (both p < 0.01) and 26:1 (p = 0.04). In multivariate analysis, the reduction in DhCer after liraglutide was independently associated with the reduction in LFC (p = 0.0005) and in TyG index (p = 0.05).. Liraglutide reduces plasma levels of numerous DhCer and Cer species in T2D patients, which may contribute to the cardiovascular benefit observed in the LEADER trial. The independent association between the decrease in plasma DhCer level with the reduction in LFC and TyG index adds new insights regarding the relationship between DhCer, liver steatosis and insulin resistance. Trial registration ClinicalTrials.gov identifier: NCT02721888. Topics: Ceramides; Diabetes Mellitus, Type 2; Fatty Liver; Humans; Hypoglycemic Agents; Insulin Resistance; Liraglutide; Triglycerides | 2023 |
Targeting a ceramide double bond improves insulin resistance and hepatic steatosis.
Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders. Topics: Animals; Ceramides; Diet, High-Fat; Fatty Liver; Gene Deletion; Insulin Resistance; Leptin; Membrane Proteins; Mice; Mice, Mutant Strains; Oxidoreductases; Sphingolipids | 2019 |
Serum acid sphingomyelinase is upregulated in chronic hepatitis C infection and non alcoholic fatty liver disease.
Sphingolipids constitute bioactive molecules with functional implications in homeostasis and pathogenesis of various diseases. However, the role of sphingolipids as possible disease biomarkers in chronic liver disease remains largely unexplored. In the present study we used mass spectrometry and spectrofluorometry methods in order to quantify various sphingolipid metabolites and also assess the activity of an important corresponding regulating enzyme in the serum of 72 healthy volunteers as compared to 69 patients with non-alcoholic fatty liver disease and 69 patients with chronic hepatitis C virus infection. Our results reveal a significant upregulation of acid sphingomyelinase in the serum of patients with chronic liver disease as compared to healthy individuals (p<0.001). Especially in chronic hepatitis C infection acid sphingomyelinase activity correlated significantly with markers of hepatic injury (r=0.312, p=0.009) and showed a high discriminative power. Accumulation of various (dihydro-) ceramide species was identified in the serum of patients with non-alcoholic fatty liver disease (p<0.001) and correlated significantly to cholesterol (r=0.448, p<0.001) but showed a significant accumulation in patients with normal cholesterol values as well (p<0.001). Sphingosine, a further bioactive metabolite, was also upregulated in chronic liver disease (p<0.001). However, no significant correlation to markers of hepatic injury was identified.. Chronic hepatitis C virus infection and non-alcoholic fatty liver disease induce a significant upregulation of serum acid sphingomyelinase which appears as a novel biomarker in chronic hepatopathies. Further studies are required to elucidate the potential of the sphingolipid signaling pathway as putative therapeutic target in chronic liver disease. Topics: Adult; Aged; Aged, 80 and over; Biomarkers; Case-Control Studies; Ceramides; Fatty Liver; Female; Gene Expression Regulation; Hepacivirus; Hepatitis C, Chronic; Humans; Liver; Male; Middle Aged; Non-alcoholic Fatty Liver Disease; Signal Transduction; Sphingomyelin Phosphodiesterase; Sphingosine | 2014 |