digoxin has been researched along with Lymphoma--Non-Hodgkin* in 4 studies
4 other study(ies) available for digoxin and Lymphoma--Non-Hodgkin
Article | Year |
---|---|
Cerebral chemical dominance and neural regulation of cell division, cell proliferation, neoplastic transformation, and genomic function.
The study assessed the isoprenoid pathway, digoxin synthesis, and neurotransmitter patterns in individuals of differing hemispheric dominance, neurogenetic disorders, and neoplasms. The HMG CoA reductase activity, serum digoxin, magnesium, tryptophan catabolites, tyrosine catabolites, and RBC membrane Na+-K+ ATPase activity were measured in individuals of differing hemispheric dominance. The digoxin status, membrane Na+-K+ ATPase activity, and serum magnesium were assessed in Huntington's disease, trisomy 21, glioblastoma multiforme, and non-Hodgkin's lymphoma (high grade lymphoma). The results showed that right hemispheric, chemically dominant individuals had elevated digoxin synthesis, increased tryptophan catabolites, and reduced tyrosine catabolites, and membrane Na+-K+ ATPase with hypomagnesemia. Left hemispheric, chemically dominant individuals had the opposite patterns. In neurogenetic disorders and neo plasms also hyperdigoxinemia induced membrane Na+-K+ ATPase inhibition, and hypomagnesemia similar to right hemispheric chemical dominance could be demonstrated. The role of hemispheric chemical dominance and hypothalamic digoxin secretion play a key role in the regulation of cell differentiation/proliferation and genomic function. Ninety-five percent of the patients with neurogenetic disorders and neoplasms were right-handed/left hemispheric dominant by dichotic listening test. However, all of them had biochemical patterns similar to right hemispheric chemical dominance. Hemispheric chemical dominance has no correlation to cerebral dominance detected by handness/dichotic listening test. Topics: Adult; Brain; Brain Neoplasms; Cell Division; Cell Membrane; Cell Movement; Cell Transformation, Neoplastic; Digoxin; Down Syndrome; Functional Laterality; Genome, Human; Glioblastoma; Humans; Huntington Disease; Hydroxymethylglutaryl CoA Reductases; Lymphoma, Non-Hodgkin; Magnesium; Neurons; Ouabain | 2003 |
Hypothalamic digoxin mediated model for oncogenesis.
This study assessed the changes in the isoprenoid pathway and its metabolites digoxin, dolichol and ubiquinone in neoplasms (CNS astrocytomas - glioblastoma multiforme and high grade non - Hodgkin's lymphoma). The following parameters were assessed-isoprenoid pathway metabolites, tyrosine and tryptophan catabolites, glycoconjugate metabolism, RBC membrane composition and free radical metabolism. There was an elevation in plasma HMG CoA reductase activity, serum digoxin and dolichol and a reduction in RBC membrane Na+-K+ ATPase activity, serum ubiquinone and magnesium levels. Serum tryptophan, serotonin, nicotine and quinolinic acid were elevated while tyrosine, dopamine, noradrenaline and morphine were decreased. The total serum glycosaminoglycans and glycosaminoglycan fractions (except dermatan sulphate in the case of CNS astrocytomas), the activity of GAG degrading enzymes and glycohydrolases, carbohydrate residues of glycoproteins and serum glycolipids were elevated. HDL cholesterol showed a significant decrease and free fatty acids & triglycerides were increased. The RBC membrane glycosaminoglycans, hexose and fucose residues of glycoproteins and phospholipids were reduced. The activity of all free radical scavenging enzymes, concentration of glutathione, iron binding capacity and ceruloplasmin decreased significantly while the concentration of malondialdehyde (MDA), hydroperoxides, conjugated dienes and NO increased. The concentration of alpha tocopherol was unaltered. Membrane Na+-K+ ATPase inhibition due to elevated digoxin, altered membrane structure and digoxin related tyrosine / tryptophan transport defect leading to increased levels of depolarising tryptophan catabolites and decreased levels of hyperpolarising tyrosine catabolites can lead to alteration in intracellular calcium/magnesium ratios and oncogene activation. Intracellular magnesium deficiency can produce defective microtubule related spindle fibre dysfunction and chromosomal non-dysjunction contributing to neoplastic cellular polyploidy and aneuploidy. Digoxin induced tryptophan/tyrosine transport defect can alter neurotransmitter patterns with increased serotonin, quinolinic acid, nicotine & glutamatergic transmission and reduced dopamine, morphine and noradrenaline levels leading to oncogenesis. Glycoconjugate metabolism is altered by elevated dolichol levels and magnesium depletion consequent to Na+-K+ ATPase inhibition. There is a qualitative alteration in proteoglycans and glyco Topics: Adult; Astrocytoma; Brain Neoplasms; Cholesterol; Digoxin; Dolichols; Erythrocyte Membrane; Female; Glycosaminoglycans; Humans; Hydroxymethylglutaryl CoA Reductases; Hypothalamus; Lymphoma, Non-Hodgkin; Male; Middle Aged; Signal Transduction; Sodium-Potassium-Exchanging ATPase; Ubiquinone | 2001 |
Malignant immunoblastic lymphoma complicated by IgM gammopathy and digoxin-like immunoreactive substance.
Topics: Aged; Aged, 80 and over; Blood Proteins; Cardenolides; Digoxin; Female; Humans; Hypergammaglobulinemia; Immunoglobulin M; Lymphoma, Non-Hodgkin; Saponins | 1987 |
[The effect of cytostatic therapy on hemodynamics (author's transl)].
Topics: Adult; Aged; Antineoplastic Agents; Blood Circulation Time; Blood Pressure; Cardiac Output; Cardiac Volume; Child; Child, Preschool; Cortisone; Cytarabine; Daunorubicin; Digoxin; Electrocardiography; Female; Heart Failure; Heart Function Tests; Hemodynamics; Hodgkin Disease; Humans; Leukemia, Lymphoid; Lymphoma, Non-Hodgkin; Male; Middle Aged; Sex Factors; Time Factors; Vincristine | 1974 |