digitoxigenin has been researched along with Arrhythmias--Cardiac* in 3 studies
3 other study(ies) available for digitoxigenin and Arrhythmias--Cardiac
Article | Year |
---|---|
Structure-based design and synthesis of novel potent Na+,K+ -ATPase inhibitors derived from a 5alpha,14alpha-androstane scaffold as positive inotropic compounds.
The design, synthesis, and biological properties of novel inhibitors of the Na(+),K(+)-ATPase as potential positive inotropic compounds are reported. Following our model of superposition between cassaine and digitoxigenin, digitalis-like activity has been elicited from a non-digitalis steroidal structure by suitable modifications of the 5alpha,14alpha-androstane skeleton. The strong hydrophobic interaction of the digitalis or cassaine polycyclic cores can be effectively obtained with the androstane skeleton taken in a reversed orientation. Thus, oxidation of C-6 and introduction in the C-3 position of the potent pharmacophoric group recently introduced by us, in the 17 position of the digitalis skeleton, namely, O-(omega-aminoalkyl)oxime, led to a series of substituted androstanes able to inhibit the Na(+),K(+)-ATPase, most of them with an IC(50) in the low micromolar level, and to induce a positive inotropic effect in guinea pig. Within this series, androstane-3,6,17-trione (E,Z)-3-(2-aminoethyl)oxime (22b, PST 2744) induced a strong positive inotropic effect while being less arrhythmogenic than digoxin, when the two compounds were compared at equiinotropic doses. Topics: Androstanes; Animals; Arrhythmias, Cardiac; Dogs; Enzyme Inhibitors; Etiocholanolone; Guinea Pigs; Models, Molecular; Myocardial Contraction; Sodium-Potassium-Exchanging ATPase; Stereoisomerism; Stimulation, Chemical; Structure-Activity Relationship | 2003 |
Synthesis, cardiotonic activity, and structure-activity relationships of 17 beta-guanylhydrazone derivatives of 5 beta-androstane-3 beta, 14 beta-diol acting on the Na+,K(+)-ATPase receptor.
A series of digitalis-like compounds, with the lactone ring shifted from the original position through a spacer or replaced by a series of guanylhydrazone substituent-bearing chains, was synthesized and evaluated for inhibition of Na+,K(+)-ATPase and for inotropic activity. The highest Na+,K(+)-ATPase inhibition (IC50) and inotropic activity (EC50) were reached with the vinylogous guanylhydrazone 5 where a cardenolide-like polarized alpha,beta-unsaturated system and a basic guanidino group were both present at the 17 beta-position; for this compound IC50 and EC50 values were comparable to or higher than those of Thomas' parent guanylhydrazone 1, digitoxigenin, and digoxin. A substantial improvement of the desired positive inotropic activity versus the toxic arrhythmogenic concentration was not reached within this series; only a slightly better therapeutic index can be envisaged for compounds 5 and 4, even though, for the latter, to the detriment of potency, presumably because of a weaker interaction with the receptor, due to the lack of a cardenolide-like polarized system. Topics: Androstanes; Animals; Arrhythmias, Cardiac; Cardiotonic Agents; Dogs; Enzyme Inhibitors; Guinea Pigs; Hydrazones; Kidney; Molecular Structure; Myocardial Contraction; Sodium-Potassium-Exchanging ATPase; Structure-Activity Relationship | 1997 |
Effect of halothane on in vivo and in vitro cardiotoxicity of an aminocardenolide.
Halothane opposes cardiotoxicity of neutral-sugar digitalis compounds in intact animals, presumably by depressing a sympathetic component of arrhythmogenesis. However, halothane also produces a dose-related reduction in arrhythmogenicity of ouabain in isolated canine Purkinje fibers, suggesting that the anesthetic may oppose direct mechanisms of cardiotoxicity as well. The present study examined in vivo and in vitro the effect of halothane on the arrhythmogenicity of ASI-222 (3-beta-O[4-amino-4-6-dideoxy-beta-D-galactopyranosyl] digitoxigen in HCl), a highly polar aminocardenolide with no sympathetic component to cardiotoxicity. For in vivo studies, ASI-222 was infused at a rate of 1 microgram/kg/min until appearance of third-degree atrioventricular (AV) block or sustained ventricular arrhythmias in 5 conscious (control) and 6 halothane-anesthetized (1.4% end-tidal) dogs. For in vitro studies, standard microelectrode techniques were used to measure action potentials (AP) in seven excised canine Purkinje fibers superfused with oxygenated Krebs-Henseleit buffer. AP were recorded during control superfusion, after induction of toxicity with 10(-7) M ASI-222, and during exposure to 0.5, 1.0, and 2.0% halothane. Purkinje fibers were paced at 500-ms cycle lengths (CL) for 20 beats, and the amplitude of delayed afterdepolarizations (DAD) were recorded. Pacing at 250 ms CL was used to trigger ectopy. In vivo studies showed no difference in the cardiotoxic dose of ASI-222 between control dogs and those anesthetized with 1.4% halothane. However, in 4 of 6 anesthetized dogs, acutely increasing the inspired halothane concentration suppressed arrhythmias once end-tidal concentration were >2.2%.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Anesthesia; Animals; Arrhythmias, Cardiac; Consciousness; Digitalis Glycosides; Digitoxigenin; Dogs; Dose-Response Relationship, Drug; Drug Interactions; Female; Halothane; Heart Diseases; Male; Purkinje Fibers | 1994 |