digitonin has been researched along with Zellweger-Syndrome* in 3 studies
3 other study(ies) available for digitonin and Zellweger-Syndrome
Article | Year |
---|---|
Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel Pex5-impaired Chinese hamster ovary cell mutant.
We isolated peroxisome biogenesis-defective Chinese hamster ovary cell mutants from TKaG2 cells, wild-type CHO-K1 cells transformed with two cDNAs encoding rat Pex2p and peroxisome targeting signal (PTS) type 2-tagged green fluorescent protein, by the 9-(1'-pyrene)nonanol/UV selection method. Ten mutant clones showed cytosolic PTS2-green fluorescent protein, indicative of a defect in PTS2 import, and were classified in five complementation groups, i.e. pex1, pex2, pex5, pex14, and group A. One PEX5-deficient mutant, ZPG231, showed a novel phenotype: PTS2 proteins in the cytosol, but PTS1 proteins and catalase in peroxisomes. In ZPG231, two isoforms of the PTS1 receptor Pex5p, a shorter Pex5pS and a longer Pex5pL, were expressed as in wild-type cells, but possessed the missense point mutation S214F in both Pex5p isoforms, termed Pex5pS-S214F and Pex5pL-S214F, respectively. The S214F mutation was located only one amino acid upstream of the Pex5pL-specific 37-amino acid insertion site. Pex5pS-S214F and Pex5pL-S214F interacted with peroxisomal proteins, including PTS1 protein, catalase, and Pex14p, as efficiently as normal Pex5p. In contrast, the S214F mutation severely affected the binding of Pex5pL to the PTS2 receptor Pex7p. Expression of Pex5pL-S214F in pex5 cell mutants defective in PTS1 and PTS2 transport restored peroxisomal import of PTS1, but not PTS2. Together, the results indicate that ZPG231 is the first cell mutant providing evidence that disruption of the Pex5pL-Pex7p interaction completely abolishes PTS2 import in mammals. Topics: Animals; ATPases Associated with Diverse Cellular Activities; Cell Line; CHO Cells; Cricetinae; Digitonin; Genetic Complementation Test; Humans; Luciferases; Membrane Proteins; Mutagenesis, Site-Directed; Peroxisomal Targeting Signal 2 Receptor; Peroxisome-Targeting Signal 1 Receptor; Peroxisomes; Protein Binding; Protein Isoforms; Rats; Receptors, Cytoplasmic and Nuclear; Recombinant Fusion Proteins; Reverse Transcriptase Polymerase Chain Reaction; Skin; Transfection; Zellweger Syndrome | 2000 |
Newly identified Chinese hamster ovary cell mutants defective in peroxisome biogenesis represent two novel complementation groups in mammals.
We isolated peroxisome biogenesis mutants from Chinese hamster ovary (CHO) cells, using the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/ UV) method and wild-type CHO-K1 cells that had been stably transfected with cDNA encoding Pex2p (formerly peroxisome assembly factor-1, PAF-1). Three mutant cell clones, ZP110, ZP111, and ZP114, showed cytosolic localization of catalase, thereby indicating a defect in peroxisome biogenesis, whereas ZP112 and ZP113 contained fewer but larger catalase-positive particles. Mutant ZP115 displayed an aberrant, tubular structure immunoreactive to anti-catalase antibody. Mutants lacking morphologically recognizable peroxisomes also showed the typical peroxisome assembly-defective phenotype such as severe loss of catalase latency and resistance to 12-(1'-pyrene)dodecanoic acid (P12)/UV treatment. ZP110 and ZP111, and ZP114 were found to belong to two novel complementation groups, respectively, by complementation group analysis with cDNA transfection and cell fusion. Cell fusion with fibroblasts from patients with peroxisome biogenesis disorders such as Zellweger syndrome revealed that ZP110 and ZP114 could not be classified to any of human complementation groups. Thus, ZP110/ZP111 and ZP114 are the first, two peroxisome-deficient cell mutants of newly identified complementation groups distinct from the ten mammalian groups previously characterized. Topics: Acetyl-CoA C-Acyltransferase; Acyl-CoA Oxidase; Animals; Catalase; Cell Fusion; CHO Cells; Cricetinae; Cytosol; Digitonin; Fibroblasts; Genetic Complementation Test; Humans; Lauric Acids; Mammals; Membrane Proteins; Microbodies; Mutagenesis; Mutation; Oxidoreductases; Peroxisomal Biogenesis Factor 2; Ultraviolet Rays; Zellweger Syndrome | 1997 |
Low-density particles (W-particles) containing catalase in Zellweger syndrome and normal fibroblasts.
By both histological and biochemical criteria, peroxisomes in patients with Zellweger syndrome appear to be absent or severely deficient. By using 15-30% (wt/vol) Nycodenz/sucrose gradients to study the subcellular localization of extraperoxisomal catalase activity, a commonly used marker for mature peroxisomes, we detected a single peak of activity in Zellweger syndrome fibroblasts at an equilibrium density of 1.13 g/cm3, lower than the expected 1.17 g/cm3 of mature peroxisomes. Upon recentrifugation in either the original gradient or one with a higher salt concentration, essentially all catalase activity was recovered in fractions of the original densities. The activity of the catalase peak was further analyzed by a digitonin titration and filtration assay in combination with Triton X-100 treatment. The catalase activity passed through 0.1-microns and 0.22-microns but was retained on 0.025-microns membrane filters (mean pore size). After treatment with Triton X-100 nearly all catalase activity passed through the filters. The results from fractionations data, digitonin latency measurement, and the detergent effect on the filtration behavior suggest that catalase is not free in the cytosol of Zellweger syndrome fibroblasts as commonly thought but in particles (W-particles). Similar low-density catalase-containing particles, distinct from peroxisomes, are also found in normal fibroblasts. We found that L-alpha-hydroxyacid oxidase, another peroxisomal matrix enzyme, is also present in W-particles derived from normal and Zellweger syndrome fibroblasts. We speculate that the low-density catalase-containing W-particle may represent an immature or incomplete form of peroxisome distinct from previously described "peroxisomal ghosts" in Zellweger syndrome fibroblasts. Topics: Biomarkers; Catalase; Cell Fractionation; Cell Line; Centrifugation, Density Gradient; Digitonin; Fibroblasts; Humans; Microbodies; Organelles; Zellweger Syndrome | 1991 |