digitonin has been researched along with Syndrome* in 3 studies
3 other study(ies) available for digitonin and Syndrome
Article | Year |
---|---|
Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA.
Mutations in the ATP6 gene of mtDNA (mitochondrial DNA) have been shown to cause several different neurological disorders. The product of this gene is ATPase 6, an essential component of the F1F0-ATPase. In the present study we show that the function of the F1F0-ATPase is impaired in lymphocytes from ten individuals harbouring the mtDNA T8993G point mutation associated with NARP (neuropathy, ataxia and retinitis pigmentosa) and Leigh syndrome. We show that the impaired function of both the ATP synthase and the proton transport activity of the enzyme correlates with the amount of the mtDNA that is mutated, ranging from 13-94%. The fluorescent dye RH-123 (Rhodamine-123) was used as a probe to determine whether or not passive proton flux (i.e. from the intermembrane space to the matrix) is affected by the mutation. Under state 3 respiratory conditions, a slight difference in RH-123 fluorescence quenching kinetics was observed between mutant and control mitochondria that suggests a marginally lower F0 proton flux capacity in cells from patients. Moreover, independent of the cellular mutant load the specific inhibitor oligomycin induced a marked enhancement of the RH-123 quenching rate, which is associated with a block in proton conductivity through F0 [Linnett and Beechey (1979) Inhibitors of the ATP synthethase system. Methods Enzymol. 55, 472-518]. Overall, the results rule out the previously proposed proton block as the basis of the pathogenicity of the mtDNA T8993G mutation. Since the ATP synthesis rate was decreased by 70% in NARP patients compared with controls, we suggest that the T8993G mutation affects the coupling between proton translocation through F0 and ATP synthesis on F1. We discuss our findings in view of the current knowledge regarding the rotary mechanism of catalysis of the enzyme. Topics: Adenosine Triphosphate; Cell Membrane Permeability; Cells, Cultured; Digitonin; DNA, Mitochondrial; Female; Humans; Ion Transport; Leigh Disease; Male; Mutation; Pedigree; Protons; Retinitis Pigmentosa; Substrate Specificity; Syndrome; Threonine | 2006 |
Genetic heterogeneity in the cerebrohepatorenal (Zellweger) syndrome and other inherited disorders with a generalized impairment of peroxisomal functions. A study using complementation analysis.
We have used complementation analysis after somatic cell fusion to investigate the genetic relationships among various genetic diseases in humans in which there is a simultaneous impairment of several peroxisomal functions. The activity of acyl-coenzyme A:dihydroxyacetonephosphate acyltransferase, which is deficient in these diseases, was used as an index of complementation. In some of these diseases peroxisomes are deficient and catalase is present in the cytosol, so that the appearance of particle-bound catalase could be used as an index of complementation. The cell lines studied can be divided into at least five complementation groups. Group 1 is represented by a cell line from a patient with the rhizomelic form of chondrodysplasia punctata. Group 2 consists of cell lines from four patients with the Zellweger syndrome, a patient with the infantile form of Refsum disease and a patient with hyperpipecolic acidemia. Group 3 comprises one cel line from a patient with the Zellweger syndrome, group 4 one cell line from a patient with the neonatal form of adrenoleukodystrophy, and group 5 one cell line from a patient with the Zellweger syndrome. We conclude that at least five genes are required for the assembly of a functional peroxisome. Topics: Acyltransferases; Adrenoleukodystrophy; Catalase; Cell Fusion; Cell Line; Centrifugation, Density Gradient; Chondrodysplasia Punctata; Digitonin; Fibroblasts; Genetic Complementation Test; Humans; Metabolism, Inborn Errors; Microbodies; Refsum Disease; Syndrome | 1988 |
Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome.
The activity of peroxisomal enzymes was studied in human liver and cultured human skin fibroblasts in relation to the finding (Goldfischer, S. et al. (1973) Science 182, 62-64) that morphologically distinct peroxisomes are not detectable in patients with the cerebro-hepato-renal (Zellweger) syndrome. In homogenates of liver from the patients, dihydroxyacetone phosphate acyltransferase, a membrane-bound peroxisomal enzyme, is deficient (Schutgens, R.B.H., et al. (1984) Biochem. Biophys. Res. Commun. 120, 179-184). In contrast, there is no deficiency of the soluble peroxisomal matrix enzymes catalase, L-alpha-hydroxyacid oxidase and E-aminoacid oxidase. Catalase is also not deficient in homogenates of cultured skin fibroblasts from the patients. The results of digitonin titration experiments showed that in control fibroblasts at least 70% of the catalase activity is present in subcellular particles distinct from mitochondria or lysosomes. In contrast, all of the catalase activity in fibroblasts from Zellweger patients is found in the same compartment as the cytosolic marker enzyme lactate dehydrogenase. Topics: Acyltransferases; Alcohol Oxidoreductases; Brain Diseases; Catalase; Cells, Cultured; D-Amino-Acid Oxidase; Digitonin; Fibroblasts; Humans; Kidney Diseases; Kinetics; Liver Diseases; Microbodies; Skin; Syndrome | 1984 |