digitonin has been researched along with Skin-Neoplasms* in 2 studies
2 other study(ies) available for digitonin and Skin-Neoplasms
Article | Year |
---|---|
Detergent fractionation with subsequent subtractive suppression hybridization as a tool for identifying genes coding for plasma membrane proteins.
The identification of tumor-specific proteins located at the plasma membrane is hampered by numerous methodological pitfalls many of which are associated with the post-translational modification of such proteins. Here, we present a new combination of detergent fractionation of cells and of subtractive suppression hybridization (SSH) to gain overexpressed genes coding for membrane-associated or secreted proteins. Fractionation of subcellular components by digitonin allowed sequestering mRNA of the rough Endoplasmatic reticulum and thereby increasing the percentage of sequences coding for membrane-bound proteins. Fractionated mRNAs from the cutaneous T-cell lymphoma (CTCL) cell line HuT78 and from normal peripheral blood monocytes were used for SSH leading to the enrichment of sequences overexpressed in the tumor cells. We identified some 21 overexpressed genes, among them are GPR137B, FAM62A, NOMO1, HSP90, SLIT1, IBP2, CLIF, IRAK and ARC. mRNA expression was tested for selected genes in CTCL cell lines, skin specimens and peripheral blood samples from CTCL patients and healthy donors. Several of the detected sequences are clearly related to cancer, but have not yet been associated with CTCL. qPCR confirmed an enrichment of these mRNAs in the rough endoplasmic reticulum fraction. RT-PCR confirmed the expression of these genes in skin specimens and peripheral blood of CTCL patients. Western blotting verified protein expression of HSP90 and IBP2 in HuT78. GPR137B could be detected by immunohistology in HuT78 and in keratinocytes of dysplastic epidermis, but also in sweat glands of healthy skin. In summary, we developed a new technique, which allows identifying overexpressed genes coding preferentially for membrane-associated proteins. Topics: Cell Fractionation; Cell Line, Tumor; Detergents; Digitonin; Endoplasmic Reticulum, Rough; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Genes, Neoplasm; Humans; Keratinocytes; Lymphoma, T-Cell, Cutaneous; Membrane Proteins; Mitochondria; Neoplasm Proteins; Organ Specificity; Polyribosomes; Ribosomal Proteins; RNA, Messenger; RNA, Neoplasm; Skin Neoplasms; Subcellular Fractions; Subtraction Technique; Sweat Glands | 2009 |
Human skin keloid fibroblasts display bioenergetics of cancer cells.
Cultured human skin keloid fibroblasts (KFs) showed bioenergetics similar to cancer cells in generating ATP mainly from glycolysis as demonstrated by increased lactate production. Activities of hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and lactate dehydrogenase were also significantly higher compared with normal fibroblasts (NFs). Inhibitors of glycolysis decreased the rate of ATP biosynthesis more significantly in KFs suggesting their reliance on glycolysis. In contrast, ATP generation in NFs was derived mainly from oxidative phosphorylation (OXPHOS), which was more compromised by mitochondrial/respiratory inhibitors. However, when fortified with excess exogenous respiratory substrates, ATP production was increased to a similar maximal level in both types of fibroblasts. In spite of this seemingly equal total capacity, ATP biosynthesis and intracellular ATP concentration were significantly higher in KFs, which further increased their ATP production when exposed to hypoxia and hypoxia-mimetics: desferrioxamine and cobalt chloride. This upregulation was again significantly compromised by glycolytic inhibitors. The rate of generation of reactive oxygen species was lower in KFs possibly due to their switch to aerobic glycolysis from mitochondrial OXPHOS. Thus, cultured skin KFs could provide a human cell model to study the de-regulation of bioenergetics of proliferative cells and their response to the HIF (hypoxia-inducible factor) signaling. Topics: Adenosine Triphosphate; Adolescent; Adult; Antimutagenic Agents; Cell Hypoxia; Cells, Cultured; Child, Preschool; Cobalt; Deferoxamine; Digitonin; Energy Metabolism; Female; Fibroblasts; Glucose; Humans; Hydrogen Peroxide; Infant; Keloid; Lactic Acid; Male; Middle Aged; Oligomycins; Siderophores; Skin Neoplasms; Uncoupling Agents | 2008 |