difopein has been researched along with Schizophrenia* in 2 studies
2 other study(ies) available for difopein and Schizophrenia
Article | Year |
---|---|
14-3-3 proteins promote synaptic localization of N-methyl d-aspartate receptors (NMDARs) in mouse hippocampal and cortical neurons.
One of the core pathogenic mechanisms for schizophrenia is believed to be dysfunction in glutamatergic synaptic transmissions, particularly hypofunction of N-methyl d-aspartate receptors (NMDARs). Previously we showed that 14-3-3 functional knockout mice exhibit schizophrenia-associated behaviors accompanied by reduced synaptic NMDARs in forebrain excitatory neurons. To investigate how 14-3-3 proteins regulate synaptic localization of NMDARs, here we examined changes in levels of synaptic NMDARs upon 14-3-3 inhibition in primary neurons. Expression of 14-3-3 protein inhibitor (difopein) in primary glutamatergic cortical and hippocampal neurons resulted in lower number of synaptic puncta containing NMDARs, including the GluN1, GluN2A, or GluN2B subunits. In heterologous cells, 14-3-3 proteins enhanced surface expression of these NMDAR subunits. Furthermore, we identified that 14-3-3ζ and ε isoforms interact with NMDARs via binding to GluN2A and GluN2B subunits. Taken together, our results demonstrate that 14-3-3 proteins play a critical role in NMDAR synaptic trafficking by promoting surface delivery of NMDAR subunits GluN1, GluN2A, and GluN2B. As NMDAR hypofunctionality is known to act as a convergence point for progression of symptoms of schizophrenia, further studies on these signaling pathways may help understand how dysfunction of 14-3-3 proteins can cause NMDAR hypofunctionality and lead to schizophrenia-associated behaviors. Topics: 14-3-3 Proteins; Animals; Biotinylation; Cells, Cultured; Disease Models, Animal; Gene Expression Regulation; HEK293 Cells; Hippocampus; Humans; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Neurons; Protein Binding; Proteins; Receptors, N-Methyl-D-Aspartate; Schizophrenia; Signal Transduction; Synapses; Synaptic Transmission | 2021 |
Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice.
The 14-3-3 family of proteins is implicated in the regulation of several key neuronal processes. Previous human and animal studies suggested an association between 14-3-3 dysregulation and schizophrenia.. We characterized behavioral and functional changes in transgenic mice that express an isoform-independent 14-3-3 inhibitor peptide in the brain.. We recently showed that 14-3-3 functional knockout mice (FKO) exhibit impairments in associative learning and memory. We report here that these 14-3-3 FKO mice display other behavioral deficits that correspond to the core symptoms of schizophrenia. These behavioral deficits may be attributed to alterations in multiple neurotransmission systems in the 14-3-3 FKO mice. In particular, inhibition of 14-3-3 proteins results in a reduction of dendritic complexity and spine density in forebrain excitatory neurons, which may underlie the altered synaptic connectivity in the prefrontal cortical synapse of the 14-3-3 FKO mice. At the molecular level, this dendritic spine defect may stem from dysregulated actin dynamics secondary to a disruption of the 14-3-3-dependent regulation of phosphorylated cofilin.. Collectively, our data provide a link between 14-3-3 dysfunction, synaptic alterations, and schizophrenia-associated behavioral deficits. Topics: 14-3-3 Proteins; Animals; Antipsychotic Agents; Behavior, Animal; Catenins; Cerebral Cortex; Clozapine; Cofilin 1; Delta Catenin; Dendrites; Disease Models, Animal; Dopamine; Haloperidol; Mice; Mice, Inbred C57BL; Mice, Knockout; Phenotype; Prepulse Inhibition; Proteins; Receptors, Dopamine; Schizophrenia; Schizophrenic Psychology; Synaptic Transmission | 2015 |