dieldrin has been researched along with Neurodegenerative-Diseases* in 4 studies
1 review(s) available for dieldrin and Neurodegenerative-Diseases
Article | Year |
---|---|
Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases--a mechanistic approach.
The etiology of most neurodegenerative disorders is multifactorial and consists of an interaction between environmental factors and genetic predisposition. The role of pesticide exposure in neurodegenerative disease has long been suspected, but the specific causative agents and the mechanisms underlying are not fully understood. For the main neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis there are evidences linking their etiology with long-term/low-dose exposure to pesticides such as paraquat, maneb, dieldrin, pyrethroids and organophosphates. Most of these pesticides share common features, namely the ability to induce oxidative stress, mitochondrial dysfunction, α-synuclein fibrillization and neuronal cell loss. This review aims to clarify the role of pesticides as environmental risk factors in genesis of idiopathic PD and other neurological syndromes. For this purpose, the most relevant epidemiological and experimental data is highlighted in order to discuss the molecular mechanisms involved in neurodegeneration. Topics: Animals; Apoptosis; Dieldrin; Environmental Exposure; Humans; Maneb; Neurodegenerative Diseases; Organophosphates; Oxidative Stress; Paraquat; Parkinson Disease, Secondary; Pesticides; Proteasome Inhibitors; Pyrethrins | 2014 |
3 other study(ies) available for dieldrin and Neurodegenerative-Diseases
Article | Year |
---|---|
Molecular networks related to the immune system and mitochondria are targets for the pesticide dieldrin in the zebrafish (Danio rerio) central nervous system.
The objectives of this study were to determine the behavioral and molecular responses in the adult zebrafish (Danio rerio) central nervous system (CNS) following a dietary exposure to the pesticide dieldrin. Zebrafish were fed pellets spiked with 0.03, 0.15, or 1.8μg/g dieldrin for 21days. Behavioral analysis revealed no difference in exploratory behaviors or those related to anxiety. Transcriptional networks for T-cell aggregation and selection were decreased in expression suggesting an immunosuppressive effect of dieldrin, consistent with other studies investigating organochlorine pesticides. Processes related to oxidative phosphorylation were also differentially affected by dieldrin. Quantitative proteomics (iTRAQ) using a hybrid quadrupole-Orbitrap identified 226 proteins that were different following one or more doses. These proteins included ATP synthase subunits (mitochondrial) and hypoxia up-regulated protein 1 which were decreased and NADH dehydrogenases (mitochondrial) and signal recognition particle 9 which were up-regulated. Thus, proteins affected were functionally associated with the mitochondria and a protein network analysis implicated Parkinson's disease (PD) and Huntington's disease as diseases associated with altered proteins. Molecular networks related to mitochondrial dysfunction and T-cell regulation are hypothesized to underlie the association between dieldrin and PD. These data contribute to a comprehensive transcriptomic and proteomic biomarker framework for pesticide exposures and neurodegenerative diseases.. Dieldrin is a persistent organochlorine pesticide that has been associated with human neurodegenerative disease such as Parkinson's disease. Dieldrin is ranked 18th on the 2015 U.S. Agency for Toxic Substances and Disease Registry and continues to be a pesticide of concern for human health. Transcriptomics and quantitative proteomics (ITRAQ) were employed to characterize the molecular networks in the central nervous system that are altered with dietary exposure to dieldrin. We found that transcriptional and protein networks related to the immune system, mitochondria, and Parkinson's disease were preferentially affected by dieldrin. The study provides new insight into the mechanisms of dieldrin neurotoxicity that may explain, in part, the association between this pesticide and increased risks to neurodegeneration. These data contribute in a significant way to developing a molecular framework for pesticide induced neurotoxicity. Topics: Animals; Central Nervous System; Dieldrin; Mitochondria; Mitochondrial Proteins; Neurodegenerative Diseases; Neurotoxicity Syndromes; Parkinson Disease, Secondary; Pesticides; Zebrafish; Zebrafish Proteins | 2017 |
Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration.
Pesticide exposure has been implicated in the etiopathogenesis of Parkinson's disease (PD); in particular, the organochlorine insecticide dieldrin is believed to be associated with PD. Emerging evidence indicates that histone modifications play a critical role in cell death. In this study, we examined the effects of dieldrin treatment on histone acetylation and its role in dieldrin-induced apoptotic cell death in dopaminergic neuronal cells. In mesencephalic dopaminergic neuronal cells, dieldrin induced a time-dependent increase in the acetylation of core histones H3 and H4. Histone acetylation occurred within 10 min of dieldrin exposure indicating that acetylation is an early event in dieldrin neurotoxicity. The hyperacetylation was attributed to dieldrin-induced proteasomal dysfunction, resulting in accumulation of a key histone acetyltransferase (HAT), cAMP response element-binding protein. The novel HAT inhibitor anacardic acid significantly attenuated dieldrin-induced histone acetylation, Protein kinase C delta proteolytic activation and DNA fragmentation in dopaminergic cells protected against dopaminergic neuronal degeneration in primary mesencephalic neuronal cultures. Furthermore, 30-day exposure of dieldrin in mouse models induced histone hyperacetylation in the striatum and substantia nigra. For the first time, our results collectively demonstrate that exposure to the neurotoxic pesticide dieldrin induces acetylation of core histones because of proteasomal dysfunction and that hyperacetylation plays a key role in dopaminergic neuronal degeneration after exposure of dieldrin. Topics: Acetylation; Anacardic Acids; Animals; Antioxidants; Apoptosis; Caspase 3; Cells, Cultured; CREB-Binding Protein; Dieldrin; Environmental Pollutants; Epigenesis, Genetic; Histones; Insecticides; Male; Mesencephalon; Mice; Mice, Inbred C57BL; Neurodegenerative Diseases; Neuroprotective Agents; Proteasome Inhibitors; Protein Kinase C-delta; Rats | 2010 |
Induction of microglial reactive oxygen species production by the organochlorinated pesticide dieldrin.
Exposure to pesticides has been speculated to contribute to the development of sporadic Parkinson's disease (PD) characterized by a progressive degeneration of the nigrostriatal dopaminergic pathway. Activation of brain microglia that produce various neurotoxic factors including cytokines and reactive oxygen species (ROS) has been increasingly associated with dopaminergic neurodegeneration induced by various toxicants. Dieldrin, a highly persistent organochlorinated pesticide found enriched in the substantia nigra of some postmortem PD brains, has been shown to be toxic to dopamine neurons. In this study, we set out to determine the effect of dieldrin on the production of ROS and the underlying mechanism of action in murine microglia. Treatment of microglial cells with 0.1 nM to 1 microM dieldrin for 24 h resulted in a concentration-dependent generation of ROS. The dieldrin-induced microglial ROS generation was time-dependent in that significant ROS production was observed in cells 12-24 h, but not 6 h after dieldrin treatment. Furthermore, the dieldrin-induced microglial ROS generation was significantly reduced by inhibitors of NADPH oxidase, gene transcription and protein synthesis. In addition to immortalized microglial cells, dieldrin induced a concentration-dependent ROS generation in primary microglia, but not in primary astroglia. These results demonstrate that nanomolar concentrations of dieldrin can stimulate microglia to produce ROS that may contribute to the degeneration of dopamine neurons known to be vulnerable to oxidative damage. These findings provide important information on the potential role of microglia in dieldrin-induced neurodegeneration in relevance to the development of idiopathic PD. Topics: Animals; Cell Line; Dieldrin; Dopamine; Dose-Response Relationship, Drug; Environmental Pollutants; Hydrocarbons, Chlorinated; Mice; Microglia; NADPH Oxidases; Neurodegenerative Diseases; Neurons; Pesticides; Rats; Rats, Inbred F344; Reactive Oxygen Species; Time Factors | 2007 |