dieckol has been researched along with Inflammation* in 4 studies
4 other study(ies) available for dieckol and Inflammation
Article | Year |
---|---|
Dieckol isolated from a brown alga, Eisenia nipponica, suppresses ear swelling from allergic inflammation in mouse.
We previously found a lipophilic fraction of the methanol/chloroform extract of a brown alga, Eisenia nipponica, that had an antiallergic effect in a murine ear swelling test. In this study, we purified the active component from the lipophilic fraction using high performance liquid chromatography and analyzed the mass and nuclear magnetic resonance spectra. This uncovered the phlorotannin dieckol, which exhibited antiallergic effects in an ear swelling test using mice sensitized by arachidonic acid, 12-O-tetradecanoylphorbol-13-acetate, and oxazolone. Mechanistic investigations indicated that dieckol suppressed degranulation, chemical mediator release, and the expression of mRNA such as cyclooxygenase-2, interleukin-6, and tumor necrosis factor-α in rat basophilic leukemia-2H3 cells. In summary, we isolated dieckol from E. nipponica and demonstrated its antiallergic mechanisms. PRACTICAL APPLICATIONS: As the incidence of allergies increases worldwide, so too does the demand for food components with antiallergic and anti-inflammatory properties. Given this trend, we focused on a brown alga that displays a variety of bioactivities. Here, we have isolated dieckol from the antiallergic lipophilic fraction of E. nipponica and found that it possesses diverse physiological activities that may prevent lifestyle-related diseases. Consequently, dieckol or the alga containing this phlorotannin could be used as a health food ingredient to combat not only allergies, but also variety of disorders including the undesirable effects of aging. Topics: Animals; Anti-Inflammatory Agents; Benzofurans; Inflammation; Mice; Phaeophyceae; Rats | 2021 |
Radioprotective efficacy of dieckol against gamma radiation-induced cellular damage in hepatocyte cells.
Naturally occurring antioxidants prevent or delay the harmful effect of free radical formation and radioprotection. The present study aimed to investigate the radioprotective effect of dieckol, a naturally occurring marine bioactive phenolic compound on lipid peroxidation and antioxidant status, DNA damage, and inflammation in gamma-radiation-induced rat primary hepatocytes. Isolated hepatocyte cells exposed to gamma-radiation showed an increased level of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) accompanied with the decrease in the activities of enzymatic (SOD, CAT, and GPx) and non-enzymatic (vitamin C, vitamin E, and GSH) antioxidants associated with increased DNA damage coupled with upregulation of inflammatory proteins (NF-κB and COX-2) compared to control. Treatment of dieckol (5, 10, 20 μM) reduces the γ-radiation-induced toxicity and the associated pro-oxidant and antioxidant imbalance as well as decreasing the DNA damage (tail length, tail moment, %DNA in a tail and olive tail moment) and inflammation in hepatocyte cells. These findings indicate that treatment of dieckol offers protection against γ-radiation-induced cellular damage in the liver cells. Topics: Animals; Antioxidants; Benzofurans; Cell Survival; DNA Damage; Gamma Rays; Hepatocytes; Inflammation; Lipid Peroxidation; Male; Oxidative Stress; Radiation-Protective Agents; Rats; Rats, Wistar | 2019 |
Hemeoxygenase 1 partly mediates the anti-inflammatory effect of dieckol in lipopolysaccharide stimulated murine macrophages.
Eisenia bicyclis is edible brown algae recognized as a rich source of bioactive derivatives mainly phlorotannins reported for their anti-oxidant properties. Of all phlorotannins identified so far, dieckol has shown the most potent effect in anti-inflammatory, radical scavenging and neuroprotective functions. However, whether dieckol up-regulates hemeoxygenase 1 (HO-1) and this mediates its anti-inflammatory effect in murine macrophages remains poorly understood. Dieckol (12.5-50 μM) inhibited nitric oxide production and attenuated inducible nitric oxide synthase, phospho (p)-PI-3K, p-Akt, p-IKK-α/β, p-IκB-α and nuclear p-NF-κBp65 protein expressions, and NF-κB transcriptional activity in LPS (0.1 μg/ml) stimulated murine macrophages. On the other hand, dieckol up-regulated HO-1 which partly mediated its anti-inflammatory effect in murine macrophages. Thus, dieckol appeared to be a potential therapeutic agent against inflammation through HO-1 up-regulation. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Benzofurans; Cell Line; Heme Oxygenase-1; Inflammation; Lipopolysaccharides; Macrophage Activation; Macrophages; Mice; NF-kappa B; Nitric Oxide; Oncogene Protein v-akt; Phaeophyceae; Phosphatidylinositol 3-Kinases; Signal Transduction; Up-Regulation | 2014 |
Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo.
The phlorotannins (phloroglucinol, eckol, and dieckol) are active compounds found in Eisenia bicyclis, and have been widely investigated for their antioxidant, anti-tumor, and anti-cancer activities. In this study, we investigated the protective effects of these phlorotannins against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice treated by high mobility group box 1 protein (HMGB1), and the signaling pathways involved. The protective activities of the phlorotannins were determined by measuring permeability, leukocyte adhesion and migration, and the activations of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that the phlorotannins inhibited; lipopolysaccharide (LPS)-induced HMGB1 release, HMGB1-mediated barrier disruption, the expressions of cell adhesion molecules (CAMs), and the adhesion/transendothelial migration of leukocytes to human endothelial cells. The phlorotannins also suppressed acetic acid induced-hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that the hydroxyl groups on dieckol positively regulated these vascular barrier protective effects. Collectively, these results suggest that phloroglucinol, eckol, and dieckol protect vascular barrier integrity by inhibiting hyperpermeability, the expressions of CAMs, and the adhesion and migration of leukocytes, which confirms their potential usefulnesses for the treatment of vascular inflammatory diseases. Topics: Animals; Benzofurans; Blood Vessels; Blotting, Western; Cell Adhesion Molecules; Cell Membrane Permeability; Cell Movement; Cell Survival; Dioxins; Endothelium, Vascular; Enzyme-Linked Immunosorbent Assay; Epithelial Cells; Female; HMGB1 Protein; Humans; Inflammation; Kelp; Lipopolysaccharides; Mice; Mice, Inbred ICR; Phloroglucinol; Spectrometry, Mass, Electrospray Ionization; Tannins; Toll-Like Receptor 4 | 2012 |