dictyostatin and Ovarian-Neoplasms

dictyostatin has been researched along with Ovarian-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for dictyostatin and Ovarian-Neoplasms

ArticleYear
Cell-based and biochemical structure-activity analyses of analogs of the microtubule stabilizer dictyostatin.
    Molecular pharmacology, 2008, Volume: 73, Issue:3

    Compounds that bind to microtubules (MTs) and alter their dynamics are highly sought as a result of the clinical success of paclitaxel and docetaxel. The naturally occurring compound (-)-dictyostatin binds to MTs, causes cell cycle arrest in G(2)/M at nanomolar concentrations, and retains antiproliferative activity in paclitaxel-resistant cell lines, making dictyostatin an attractive candidate for development as an antineoplastic agent. In this study, we examined a series of dictyostatin analogs to probe biological and biochemical structure-activity relationships. We used a high-content multiparameter fluorescence-based cellular assay for MT morphology, chromatin condensation, mitotic arrest, and cellular toxicity to identify regions of dictyostatin that were essential for biological activity. Four analogs (6-epi-dictyostatin, 7-epi-dictyostatin, 16-normethyldictyostatin, and 15Z,16-normethyldictyostatin) retained low nanomolar activity in the cell-based assay and were chosen for analyses with isolated tubulin. All four compounds were potent inducers of MT assembly. Equilibrium binding constant (K(i)) determinations using [(14)C]epothilone B, which has a 3-fold higher affinity for the taxoid binding site than paclitaxel, indicated that 6-epi-dictyostatin and 7-epi-dictyostatin displaced [(14)C]epothilone B with K(i) values of 480 and 930 nM, respectively. 16-Normethyldictyostatin and 15Z,16-normethyldictyostatin had reduced affinity (K(i) values of 4.55 and 4.47 muM, respectively), consistent with previous reports showing that C16-normethyldictyostatin loses potency in paclitaxel-resistant cell lines that have a Phe270-to-Val mutation in the taxoid binding site of beta-tubulin. Finally, we developed a set of quantitative structure-activity relationship equations correlating structures with antiproliferative activity. The equations accurately predicted biological activity and will help in the design of future analogs.

    Topics: Alkanes; Animals; Benzimidazoles; Binding Sites; Brain Chemistry; Carbamates; Carcinoma; Cattle; Cell Line, Tumor; Cell Nucleus; Cell Proliferation; Epothilones; Female; Fluorescein-5-isothiocyanate; Fluorescent Antibody Technique, Indirect; Fluorescent Dyes; G2 Phase; HeLa Cells; Histones; Humans; Kinetics; Lactones; Macrolides; Microtubules; Molecular Structure; Ovarian Neoplasms; Paclitaxel; Phosphorylation; Protein Binding; Pyrones; Quantitative Structure-Activity Relationship; Radioligand Assay; Tubulin; Tubulin Modulators

2008
Discodermolide/Dictyostatin hybrids: synthesis and biological evaluation.
    Organic letters, 2002, Dec-12, Volume: 4, Issue:25

    [structure: see text] Two hybrid analogues of discodermolide and dictyostatin (3, 26) have been designed and synthesized. These are the first macrocyclic analogues of discodermolide and biological activities were evaluated and compared with linear discodermolide analogues.

    Topics: Alkanes; Antineoplastic Agents; Breast Neoplasms; Carbamates; Female; Humans; Lactones; Macrolides; Ovarian Neoplasms; Pyrones; Tumor Cells, Cultured

2002