diclofenac has been researched along with Apoplexy in 11 studies
Diclofenac: A non-steroidal anti-inflammatory agent (NSAID) with antipyretic and analgesic actions. It is primarily available as the sodium salt.
diclofenac : A monocarboxylic acid consisting of phenylacetic acid having a (2,6-dichlorophenyl)amino group at the 2-position.
Excerpt | Relevance | Reference |
---|---|---|
"We observed that a low-dose diclofenac sodium infusion was effective in treating fever without systemic side effects." | 9.01 | Continuous intravenous low-dose diclofenac sodium to control a central fever after ischemic stroke in the intensive care unit: a case report and review of the literature. ( Aurilio, C; Esposito, V; Giaccari, LG; Pace, MC; Passavanti, MB; Pota, V; Sansone, P, 2019) |
"We observed that a low-dose diclofenac sodium infusion was effective in treating fever without systemic side effects." | 5.01 | Continuous intravenous low-dose diclofenac sodium to control a central fever after ischemic stroke in the intensive care unit: a case report and review of the literature. ( Aurilio, C; Esposito, V; Giaccari, LG; Pace, MC; Passavanti, MB; Pota, V; Sansone, P, 2019) |
"Overall, the use of NSAIDs is not associated with an increased risk of hemorrhagic stroke, although this risk was modestly significantly elevated in diclofenac and meloxicam users." | 4.93 | Nonaspirin Nonsteroidal Anti-Inflammatory Drugs and Risk of Hemorrhagic Stroke: A Systematic Review and Meta-Analysis of Observational Studies. ( Matteson, EL; Thongprayoon, C; Ungprasert, P, 2016) |
" High-dose ibuprofen and diclofenac were associated with increased risk of ischemic stroke [hazard ratio 2·15 (95% confidence interval 1·66-2·79) and 2·37 (confidence interval 1·99-2·81), respectively]." | 3.80 | Use of nonsteroidal anti-inflammatory drugs among healthy people and specific cerebrovascular safety. ( Andersson, C; Fosbøl, EL; Gislason, GH; Kober, L; Olesen, JB; Olsen, AM; Torp-Pedersen, C, 2014) |
"This was a post hoc analysis from the INternational VErapamil Trandolapril STudy (INVEST), which enrolled patients with hypertension and coronary artery disease." | 3.77 | Harmful effects of NSAIDs among patients with hypertension and coronary artery disease. ( Bavry, AA; Cooper-Dehoff, RM; Gong, Y; Handberg, EM; Khaliq, A; Pepine, CJ, 2011) |
" Naproxen users had the lowest adjusted rates of serious coronary heart disease (myocardial infarction, coronary heart disease death) and serious cardiovascular disease (myocardial infarction, stroke)/death from any cause, with respective incidence rate ratios (relative to NSAID nonusers) of 0." | 3.75 | Cardiovascular risks of nonsteroidal antiinflammatory drugs in patients after hospitalization for serious coronary heart disease. ( Arbogast, PG; Castellsague, J; Chung, CP; Daugherty, JR; García-Rodríguez, LA; Murray, KT; Ray, WA; Stein, CM; Varas-Lorenzo, C, 2009) |
"To estimate the net cardiovascular (CV) (coronary heart disease, stroke, congestive heart failure), and gastrointestinal (GI) (peptic ulcer complications) risk-benefit public health impact of the use of celecoxib compared to non-selective NSAIDs in the arthritis population." | 3.74 | Quantitative assessment of the gastrointestinal and cardiovascular risk-benefit of celecoxib compared to individual NSAIDs at the population level. ( Castellsague, J; Maguire, A; Perez-Gutthann, S; Varas-Lorenzo, C, 2007) |
"Diclofenac initiators were compared to healthcare-seeking non-initiators and head-to-head using an approximated high dose of ≥150 mg/day vs." | 1.91 | High- vs. low-dose diclofenac and cardiovascular risks: a target trial emulation. ( Arendt-Nielsen, L; Hauge, EM; Pedersen, L; Schmidt, M; Sørensen, HT, 2023) |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (27.27) | 29.6817 |
2010's | 6 (54.55) | 24.3611 |
2020's | 2 (18.18) | 2.80 |
Authors | Studies |
---|---|
Schmidt, M | 1 |
Arendt-Nielsen, L | 1 |
Hauge, EM | 1 |
Sørensen, HT | 1 |
Pedersen, L | 1 |
Giaccari, LG | 1 |
Pace, MC | 1 |
Passavanti, MB | 1 |
Sansone, P | 1 |
Esposito, V | 1 |
Aurilio, C | 1 |
Pota, V | 1 |
Moore, N | 1 |
Chen, YR | 1 |
Hsieh, FI | 1 |
Chang, CC | 1 |
Chi, NF | 1 |
Wu, HC | 1 |
Chiou, HY | 1 |
Bhala, N | 1 |
Emberson, J | 1 |
Merhi, A | 1 |
Abramson, S | 1 |
Arber, N | 1 |
Baron, JA | 1 |
Bombardier, C | 1 |
Cannon, C | 1 |
Farkouh, ME | 1 |
FitzGerald, GA | 1 |
Goss, P | 1 |
Halls, H | 1 |
Hawk, E | 1 |
Hawkey, C | 1 |
Hennekens, C | 1 |
Hochberg, M | 1 |
Holland, LE | 1 |
Kearney, PM | 1 |
Laine, L | 1 |
Lanas, A | 1 |
Lance, P | 1 |
Laupacis, A | 1 |
Oates, J | 1 |
Patrono, C | 1 |
Schnitzer, TJ | 1 |
Solomon, S | 1 |
Tugwell, P | 1 |
Wilson, K | 1 |
Wittes, J | 1 |
Baigent, C | 1 |
Ungprasert, P | 1 |
Matteson, EL | 1 |
Thongprayoon, C | 1 |
Ray, WA | 1 |
Varas-Lorenzo, C | 2 |
Chung, CP | 1 |
Castellsague, J | 2 |
Murray, KT | 1 |
Stein, CM | 1 |
Daugherty, JR | 1 |
Arbogast, PG | 1 |
García-Rodríguez, LA | 1 |
Bavry, AA | 1 |
Khaliq, A | 1 |
Gong, Y | 1 |
Handberg, EM | 1 |
Cooper-Dehoff, RM | 1 |
Pepine, CJ | 1 |
Fosbøl, EL | 1 |
Olsen, AM | 1 |
Olesen, JB | 1 |
Andersson, C | 1 |
Kober, L | 1 |
Torp-Pedersen, C | 1 |
Gislason, GH | 1 |
Maguire, A | 1 |
Perez-Gutthann, S | 1 |
Pitarch Bort, G | 1 |
de la Cuadra Oyanguren, J | 1 |
Torrijos Aguilar, A | 1 |
García-Melgares Linares, ML | 1 |
Trial | Phase | Enrollment | Study Type | Start Date | Status | ||
---|---|---|---|---|---|---|---|
WilL LOWer Dose Aspirin be More Effective Following ACS? (WILLOW-ACS)[NCT02741817] | Phase 4 | 20 participants (Actual) | Interventional | 2016-06-26 | Completed | ||
Astaxanthin Effects on Osteoarthritis Associated Pain and Inflammatory Indicators[NCT03664466] | 0 participants (Actual) | Interventional | 2021-04-29 | Withdrawn (stopped due to Inadequate funding) | |||
Analgesic Efficacy of Preoperative Oral Administration of Dexketoprofen Trometamol in Third Molar Surgery, Compared to Postoperative Administration[NCT02380001] | Phase 4 | 60 participants (Actual) | Interventional | 2015-01-31 | Completed | ||
Treatment Efficacy of 'Shinbaro Capsule' in the Treatment of Hand Osteoarthritis: Randomized, Double-blinded, Placebo-controlled, Multicenter Investigator Initiated Trial.[NCT01910116] | Phase 2/Phase 3 | 220 participants (Actual) | Interventional | 2013-09-30 | Completed | ||
Effects on Omission of NSAIDs on the Consumption of Opioids in the Standard Analgesic Regimen After Elective Laparoscopic Colorectal Cancer Resection in an ERAS Setting. A Retrospective Single-center Cohort Study.[NCT04448652] | 502 participants (Actual) | Observational [Patient Registry] | 2015-01-01 | Completed | |||
A Phase IIa Randomized, Active-controlled, Double-blind, Dose-escalation Study in Patients With Vulvovaginal Candidiasis to Evaluate Dose Response Relationship of Clinical Efficacy, Safety and Tolerability of Topically Administered ProF-001[NCT03115073] | Phase 2/Phase 3 | 84 participants (Actual) | Interventional | 2017-04-04 | Completed | ||
[information is prepared from clinicaltrials.gov, extracted Sep-2024] |
"Change in AUSCAN function score at 12 weeks from baseline = Function score at 12 weeks (0-100)- Function score at baseline (0-100). AUSCAN Function score scale ranges from 0 (no functional limitation) to 100 (worst possible functional limitation).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 12 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -11 |
Placebo | -2.9 |
"Change in AUSCAN function score at 16 weeks from baseline = Function score at 16 weeks (0-100)- Function score at baseline (0-100). AUSCAN Function score scale ranges from 0 (no functional limitation) to 100 (worst possible functional limitation).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 16 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -9.9 |
Placebo | -4.8 |
"Change in AUSCAN function score at 4 weeks from baseline = Function score at 4 weeks (0-100)- Function score at baseline (0-100). AUSCAN Function score scale ranges from 0 (no functional limitation) to 100 (worst possible functional limitation).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Basline and 4 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -6.8 |
Placebo | -3.7 |
"Change in AUSCAN function score at 8 weeks from baseline = Function score at 8 weeks (0-100)- Function score at baseline (0-100). AUSCAN Function score scale ranges from 0 (no functional limitation) to 100 (worst possible functional limitation).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 8 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -9.7 |
Placebo | -4.8 |
"Change in AUSCAN pain score at 4 weeks from baseline = Pain at 4 weeks (0-100) - Pain at baseline (0-100).~AUSCAN Pain scale ranges from 0 (no pain) to 100 (worst possible pain).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 4 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -9.0 |
Placebo | -2.2 |
"Change in AUSCAN pain score at 12 weeks from baseline = Pain at 12 weeks (0-100)- Pain at baseline (0-100). AUSCAN Pain scale ranges from 0 (no pain) to 100 (worst possible pain).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline, 12 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -14.6 |
Placebo | -8.0 |
"Change in AUSCAN pain score at 16 weeks from baseline = Pain at 16 weeks (0-100)- Pain at baseline (0-100). AUSCAN Pain scale ranges from 0 (no pain) to 100 (worst possible pain).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 16 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -15.6 |
Placebo | -4.4 |
"Change in AUSCAN pain score at 8 weeks from baseline = Pain at 8 weeks (0-100)- Pain at baseline (0-100). AUSCAN Pain scale ranges from 0 (no pain) to 100 (worst possible pain).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline, 8 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -13.4 |
Placebo | -2.2 |
"Change in AUSCAN stiffness score at 12 weeks from baseline = Stiffness at 12 weeks (0-100)- Stiffness at baseline (0-100). AUSCAN Stiffness scale ranges from 0 (no stiffness) to 100 (worst possible stiffness).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Basline and 12 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -14.0 |
Placebo | -11.0 |
"Change in AUSCAN stiffness score at 16 weeks from baseline = Stiffness at 16 weeks (0-100)- Stiffness at baseline (0-100). AUSCAN Stiffness scale ranges from 0 (no stiffness) to 100 (worst possible stiffness).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline, 16 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -10.0 |
Placebo | -8.0 |
"Change in AUSCAN stiffness score at 4 weeks from baseline = Stiffness at 4 weeks (0-100)- Stiffness at baseline (0-100). AUSCAN Stiffness scale ranges from 0 (no stiffness) to 100 (worst possible stiffness).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 4 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -9.0 |
Placebo | -6.0 |
"Change in AUSCAN stiffness score at 8 weeks from baseline = Stiffness at 8 weeks (0-100)- Stiffness at baseline (0-100). AUSCAN Stiffness scale ranges from 0 (no stiffness) to 100 (worst possible stiffness).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: baseline and 8 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -12.0 |
Placebo | -6 |
Number of patients who met OMERACT-OARSI criteria = significant clinical improvement in osteoarthritis symptom after treatment (NCT01910116)
Timeframe: Baselie and 16 weeks
Intervention | participants (Number) |
---|---|
Shinbaro | 55 |
Placebo | 40 |
"Change in Patient global assessment (PGA) at 12 weeks from baseline = PGA at 12 weeks (0-100)- PGA score at baseline (0-100). GPA scale ranges from 0 (excellent condition) to 100 (worst possible worse possible condition).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 12 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -11.0 |
Placebo | -6.0 |
"Change in Patient global assessment (PGA) at 16 weeks from baseline = PGA at 16 weeks (0-100)- PGA score at baseline (0-100). PGA scale ranges from 0 (excellent condition) to 100 (worst possible worse possible condition).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 16 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -10.0 |
Placebo | -8.5 |
"Change in Patient global assessment (PGA) at 4 weeks from baseline = PGA at 4 weeks (0-100)- PGA score at baseline (0-100). PGA scale ranges from 0 (excellent condition) to 100 (worst possible worse possible condition).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 4 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -9.0 |
Placebo | -3.0 |
"Change in Patient global assessment (PGA) at 8 weeks from baseline = PGA at 8 weeks (0-100)- PGA score at baseline (0-100). PGA scale ranges from 0 (excellent condition) to 100 (worst possible worse possible condition).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 8 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -10.0 |
Placebo | -6.0 |
"Change in Physician global assessment (PhGA) at 12 weeks from baseline = PhGA at 12 weeks (0-100)- PhGA score at baseline (0-100). PhGA scale ranges from 0 (excellent condition) to 100 (worst possible worse possible condition).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 12 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -19.0 |
Placebo | -13 |
"Change in Physician global assessment (PhGA) at 16 weeks from baseline = PhGA at 16 weeks (0-100)- PhGA score at baseline (0-100). PhGA scale ranges from 0 (excellent condition) to 100 (worst possible worse possible condition).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 16 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -12 |
Placebo | -6.5 |
"Change in Physician global assessment (PhGA) at 4 weeks from baseline = PhGA at 4 weeks (0-100)- PhGA score at baseline (0-100). GPA scale ranges from 0 (excellent condition) to 100 (worst possible worse possible condition).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: baseline and 4 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -12 |
Placebo | -7.0 |
"Change in Physician global assessment (PhGA) at 8 weeks from baseline = PhGA at 8 weeks (0-100)- PhGA score at baseline (0-100). PhGA scale ranges from 0 (excellent condition) to 100 (worst possible worse possible condition).~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 8 weeks
Intervention | units on a scale (Median) |
---|---|
Shinbaro | -16.0 |
Placebo | -11.5 |
"Change in Swollen joint count (SJC) at 12 weeks from baseline = SJC at 12 weeks - TJC at baseline..~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 12 weeks
Intervention | Joints (Median) |
---|---|
Shinbaro | 0 |
Placebo | 0 |
"Change in Swollen joint count (SJC) at 16 weeks from baseline = SJC at 16 weeks - TJC at baseline..~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 16 weeks
Intervention | Joints (Median) |
---|---|
Shinbaro | 0 |
Placebo | 0 |
"Change in Swollen joint count (SJC) at 4 weeks from baseline = SJC at 4 weeks - TJC at baseline..~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 4 weeks
Intervention | Joints (Median) |
---|---|
Shinbaro | 0 |
Placebo | 0 |
"Change in Swollen joint count (SJC) at 8 weeks from baseline = SJC at 8 weeks - TJC at baseline..~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 8 weeks
Intervention | Joints (Median) |
---|---|
Shinbaro | 0 |
Placebo | 0 |
"Change in Tender joint count (TJC) at 12 weeks from baseline = TJC at 12 weeks - TJC at baseline..~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 12 weeks
Intervention | joints (Median) |
---|---|
Shinbaro | -2.0 |
Placebo | -1.0 |
"Change in Tender joint count (TJC) at 16 weeks from baseline = TJC at 16 weeks - TJC at baseline..~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 16 weeks
Intervention | joints (Median) |
---|---|
Shinbaro | -2.0 |
Placebo | -1.0 |
"Change in Tender joint count (TJC) at 4 weeks from baseline = TJC at 4 weeks - TJC at baseline..~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 4 weeks
Intervention | joints (Median) |
---|---|
Shinbaro | -1 |
Placebo | 0 |
"Change in Tender joint count (TJC) at 8 weeks from baseline = TJC at 8 weeks - TJC at baseline..~Negative value means improvement from baseline~Positive value means deterioration from baseline" (NCT01910116)
Timeframe: Baseline and 8 weeks
Intervention | Joints (Median) |
---|---|
Shinbaro | -1.0 |
Placebo | -1.0 |
yes = AAP rescue use, no = no AAP rescue use (NCT01910116)
Timeframe: 12 weeks and 16 weeks
Intervention | participants (Number) | |
---|---|---|
yes | no | |
Placebo | 2 | 104 |
Shinbaro | 4 | 105 |
yes = AAP rescue use, no = no AAP rescue use (NCT01910116)
Timeframe: 4 weeks and 8 weeks
Intervention | participants (Number) | |
---|---|---|
yes | no | |
Placebo | 7 | 99 |
Shinbaro | 10 | 99 |
yes = AAP rescue use, no = no AAP rescue use (NCT01910116)
Timeframe: 8 weeks and 12 weeks
Intervention | participants (Number) | |
---|---|---|
yes | no | |
Placebo | 4 | 102 |
Shinbaro | 4 | 105 |
yes = AAP rescue use, no = no AAP rescue use (NCT01910116)
Timeframe: Baseline 4 weeks
Intervention | participants (Number) | |
---|---|---|
yes | no | |
Placebo | 4 | 102 |
Shinbaro | 7 | 102 |
Number of patients who met OMERACT-OARSI criteria = significant clinical improvement in osteoarthritis symptom after treatment (NCT01910116)
Timeframe: Baseline and 12 weeks
Intervention | participants (Number) | |
---|---|---|
responder | nonresponder | |
Placebo | 43 | 63 |
Shinbaro | 62 | 47 |
Number of patients who met OMERACT-OARSI criteria = significant clinical improvement in osteoarthritis symptom after treatment (NCT01910116)
Timeframe: Baseline and 8 weeks
Intervention | participants (Number) | |
---|---|---|
responder | nonresponder | |
Placebo | 38 | 68 |
Shinbaro | 56 | 53 |
Outcome Measures in Rheumatology-Osteoarthritis Research Society International (OMERACT-OARSI) Number of patients who met OMERACT-OARSI criteria = significant clinical improvement in osteoarthritis symptom after treatment (NCT01910116)
Timeframe: Baseline and 4 weeks
Intervention | participants (Number) | |
---|---|---|
Responder | Nonresponder | |
Placebo | 32 | 74 |
Shinbaro | 48 | 61 |
4 reviews available for diclofenac and Apoplexy
Article | Year |
---|---|
Continuous intravenous low-dose diclofenac sodium to control a central fever after ischemic stroke in the intensive care unit: a case report and review of the literature.
Topics: Aged; Anti-Inflammatory Agents, Non-Steroidal; Brain Ischemia; Diclofenac; Female; Fever; Humans; In | 2019 |
Coronary Risks Associated with Diclofenac and Other NSAIDs: An Update.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Cardiotoxicity; Cardiovascular Diseases; Cyclooxygenase 2 I | 2020 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Blood Vessels; Coronary Disease; Cyclooxygenase 2 Inhibitor | 2013 |
Nonaspirin Nonsteroidal Anti-Inflammatory Drugs and Risk of Hemorrhagic Stroke: A Systematic Review and Meta-Analysis of Observational Studies.
Topics: Anti-Inflammatory Agents, Non-Steroidal; Celecoxib; Cerebral Hemorrhage; Diclofenac; Humans; Ibuprof | 2016 |
7 other studies available for diclofenac and Apoplexy
Article | Year |
---|---|
High- vs. low-dose diclofenac and cardiovascular risks: a target trial emulation.
Topics: Adult; Anti-Inflammatory Agents, Non-Steroidal; Brain Ischemia; Cardiovascular System; Diclofenac; H | 2023 |
Effect on Risk of Stroke and Acute Myocardial Infarction of Nonselective Nonsteroidal Anti-Inflammatory Drugs in Patients With Rheumatoid Arthritis.
Topics: Aged; Aged, 80 and over; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Rheumatoid; Celecoxib; | 2018 |
Cardiovascular risks of nonsteroidal antiinflammatory drugs in patients after hospitalization for serious coronary heart disease.
Topics: Aged; Anti-Inflammatory Agents, Non-Steroidal; Cardiovascular Diseases; Celecoxib; Cohort Studies; C | 2009 |
Harmful effects of NSAIDs among patients with hypertension and coronary artery disease.
Topics: Adult; Aged; Anti-Inflammatory Agents, Non-Steroidal; Antihypertensive Agents; Blood Pressure; Celec | 2011 |
Use of nonsteroidal anti-inflammatory drugs among healthy people and specific cerebrovascular safety.
Topics: Adult; Anti-Inflammatory Agents, Non-Steroidal; Brain Ischemia; Cohort Studies; Denmark; Diclofenac; | 2014 |
Quantitative assessment of the gastrointestinal and cardiovascular risk-benefit of celecoxib compared to individual NSAIDs at the population level.
Topics: Adult; Aged; Aged, 80 and over; Anti-Inflammatory Agents, Non-Steroidal; Arthritis; Cardiovascular D | 2007 |
Allergic contact dermatitis due to aceclofenac.
Topics: Administration, Cutaneous; Aged; Anti-Inflammatory Agents, Non-Steroidal; Dermatitis, Allergic Conta | 2006 |