dichloroacetic acid has been researched along with Myocardial Ischemia in 26 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 17 (65.38) | 18.2507 |
2000's | 7 (26.92) | 29.6817 |
2010's | 2 (7.69) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Asta, J; Azam, MA; Farid, T; Jaimes, R; Kay, MW; Kusha, M; Kuzmiak-Glancy, S; Lai, PF; Lopaschuk, GD; Massé, S; Nanthakumar, K; Wagg, CS | 1 |
Clanachan, AS; Folmes, CD; Lopaschuk, GD; Sowah, D | 1 |
Beresewicz, A; Skierczynska, A | 1 |
Gozal, Y; Van Winkle, DM; Wolff, RA | 1 |
Barr, R; Dyck, JR; Lopaschuk, GD; Thomas, PD | 1 |
Hill, JA; Schofield, RS | 1 |
Pauly, DF; Pepine, CJ | 1 |
Clanachan, AS; Finegan, BA; Gandhi, M | 1 |
Cason, BA; Hickey, RF; Mazer, CD; Shnier, CB; Stanley, WC; Wisneski, JA | 1 |
Ackman, M; DeAlmeida, J; Dzavik, V; Humen, D; Lopaschuk, G; Montague, T; Teo, K; Walker, D; Witkowski, F | 1 |
Fujita, M; Kambara, H; Konishi, J; Nohara, R; Okuda, K; Sasayama, S; Tamaki, N | 1 |
Bakke, JE; Bergmann, SR; Janier, MF; Marshall, DR; Vanoverschelde, JL | 1 |
Barr, RL; Lopaschuk, GD; Wambolt, RB | 1 |
Fujita, M; Konishi, J; Nohara, R; Okuda, K; Sasayama, S; Tamaki, N | 1 |
Bolling, SF; Childs, KF; Olszanski, D; Wahr, JA | 1 |
Bringas, J; Hernandez, LA; McCormack, JG; Spires, D; Stanley, WC; Wallace, S | 1 |
Itoi, T; Lopaschuk, GD | 1 |
Clanachan, AS; Liu, B; Lopaschuk, GD; Schulz, R | 1 |
Lerch, R; Montessuit, C; Papageorgiou, I; Tardy, I | 1 |
Bersin, RM; Stacpoole, PW | 1 |
Barak, C; Jessen, ME; Malloy, CR; Maniscalco, SP; Reed, MK; Sherry, AD | 1 |
Buxton, DB; Knight, RJ; Kofoed, KF; Schelbert, HR; Schöder, H | 1 |
Constantin-Teodosiu, D; Greenhaff, PL; Keon, CA; Randall, MD | 1 |
Abiko, Y; Hara, A; Hashizume, H; Maruyama, K; Matsumura, H | 1 |
Bernard, M; Cozzone, PJ; el Banani, H; Feuvray, D | 1 |
Clanachan, AS; Hunter, CA; Lopaschuk, GD; Pehowich, DJ; Taniguchi, M; Wilson, C | 1 |
2 review(s) available for dichloroacetic acid and Myocardial Ischemia
Article | Year |
---|---|
Role of metabolically active drugs in the management of ischemic heart disease.
Topics: Acetanilides; Animals; Cardiovascular Agents; Carnitine; Clinical Trials as Topic; Dichloroacetic Acid; Energy Metabolism; Fatty Acids; Glucose; Humans; Insulin; Myocardial Ischemia; Myocardium; Piperazines; Potassium; Ranolazine; Trimetazidine | 2001 |
Ischemic heart disease: metabolic approaches to management.
Topics: Acetanilides; Cardiovascular Agents; Carnitine; Dichloroacetic Acid; Energy Metabolism; Humans; Myocardial Ischemia; Oxidation-Reduction; Piperazines; Ranolazine; Ribose; Trimetazidine | 2004 |
1 trial(s) available for dichloroacetic acid and Myocardial Ischemia
Article | Year |
---|---|
Enhanced glucose oxidation in exercise-induced myocardial ischemia.
Topics: Adult; Aged; Body Surface Potential Mapping; Dichloroacetic Acid; Double-Blind Method; Electrocardiography; Exercise Test; Female; Glucose; Humans; Male; Middle Aged; Myocardial Ischemia; Oxidation-Reduction | 1994 |
23 other study(ies) available for dichloroacetic acid and Myocardial Ischemia
Article | Year |
---|---|
Feeding the fibrillating heart: Dichloroacetate improves cardiac contractile dysfunction following VF.
Topics: Animals; Dichloroacetic Acid; Heart; Lactic Acid; Male; Myocardial Contraction; Myocardial Ischemia; Myocardium; NAD; Phosphorylation; Pressure; Pyruvate Dehydrogenase Complex; Rats; Rats, Sprague-Dawley; Ventricular Dysfunction, Left; Ventricular Fibrillation; Ventricular Function, Left | 2015 |
High rates of residual fatty acid oxidation during mild ischemia decrease cardiac work and efficiency.
Topics: Adenine Nucleotides; Animals; Dichloroacetic Acid; Fatty Acids; Glucose; Glycogen; Glycolysis; Heart; In Vitro Techniques; Male; Myocardial Ischemia; Myocardium; Oxidation-Reduction; Palmitates; Perfusion; Rats; Rats, Sprague-Dawley; Triglycerides | 2009 |
Demand-induced ischemia in volume expanded isolated rat heart; the effect of dichloroacetate and trimetazidine.
Topics: Animals; Coronary Circulation; Dichloroacetic Acid; Disease Models, Animal; Dobutamine; Fatty Acids; Glucose; Glycolysis; Male; Myocardial Ischemia; Oxidation-Reduction; Oxygen Consumption; Palmitic Acid; Rats; Rats, Wistar; Trimetazidine | 2010 |
Manipulations in glycogen metabolism and the failure to influence infarct size in the ischaemic rabbit heart.
Topics: Analysis of Variance; Animals; Blood Pressure; Coronary Circulation; Dichloroacetic Acid; Glycogen; Heart Rate; Ischemic Preconditioning, Myocardial; Male; Myocardial Infarction; Myocardial Ischemia; Rabbits; Time Factors | 2002 |
Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase.
Topics: Acetyl-CoA C-Acyltransferase; Animals; Cardiotonic Agents; Dichloroacetic Acid; Dose-Response Relationship, Drug; Enzyme Activation; Fatty Acids; Glucose; Heart; In Vitro Techniques; Male; Myocardial Ischemia; Oxidation-Reduction; Rats; Rats, Sprague-Dawley; Recovery of Function; Trimetazidine; Vasodilator Agents | 2003 |
Role of glucose metabolism in the recovery of postischemic LV mechanical function: effects of insulin and other metabolic modulators.
Topics: Adenosine; Animals; Dichloroacetic Acid; Energy Metabolism; Enzyme Inhibitors; Glucose; Glycine; Glycolysis; Hydrogen-Ion Concentration; In Vitro Techniques; Insulin; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Palmitic Acid; Perfusion; Rats; Rats, Sprague-Dawley; Time Factors; Ventricular Dysfunction, Left | 2008 |
Dichloroacetate stimulates carbohydrate metabolism but does not improve systolic function in ischemic pig heart.
Topics: Animals; Carbohydrate Metabolism; Coronary Circulation; Dichloroacetic Acid; Gases; Heart; Hemodynamics; In Vitro Techniques; Myocardial Contraction; Myocardial Ischemia; Myocardium; Sodium Chloride; Swine; Systole | 1995 |
[Ischemia and cardiac metabolism--evaluation with dichloroacetate (DCA)].
Topics: Animals; Dichloroacetic Acid; Dogs; Heart; Myocardial Contraction; Myocardial Ischemia; Myocardium | 1993 |
Rate of glycolysis during ischemia determines extent of ischemic injury and functional recovery after reperfusion.
Topics: Animals; Biomarkers; Blood Pressure; Body Water; Dichloroacetic Acid; Energy Metabolism; Fatty Acids, Nonesterified; Glucose; Glycogen; Glycolysis; Heart; Heart Rate; In Vitro Techniques; Insulin; Lactates; Myocardial Contraction; Myocardial Ischemia; Myocardial Reperfusion; Myocardium; Oxygen Consumption; Rabbits; Time Factors; Triglycerides; Ventricular Function, Left | 1994 |
An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts.
Topics: Aerobiosis; Animals; Dichloroacetic Acid; Fatty Acids; Glucose; Glycolysis; In Vitro Techniques; Insulin; Male; Myocardial Ischemia; Myocardial Reperfusion; Myocardial Reperfusion Injury; Myocardium; Oxidation-Reduction; Protons; Rats; Rats, Sprague-Dawley; Stimulation, Chemical; Time Factors | 1993 |
Improvement of myocardial ischemic dysfunction with dichloroacetic acid: experimental study by repeated ischemia in dogs.
Topics: Animals; Blood Glucose; Calcium; Coronary Circulation; Dichloroacetic Acid; Dogs; Fatty Acids, Nonesterified; Glucose; Hydrogen-Ion Concentration; Lactates; Lactic Acid; Myocardial Ischemia; Myocardial Stunning; Technetium Tc 99m Pyrophosphate | 1995 |
Dichloroacetate enhanced myocardial functional recovery post-ischemia : ATP and NADH recovery.
Topics: Adenine Nucleotides; Adenosine Triphosphate; Animals; Blood Pressure; Coronary Circulation; Dichloroacetic Acid; Energy Metabolism; Heart; Heart Rate; Hemodynamics; In Vitro Techniques; Male; Myocardial Ischemia; Myocardial Reperfusion; Myocardium; NAD; Oxidation-Reduction; Oxygen Consumption; Rabbits; Time Factors | 1996 |
Pyruvate dehydrogenase activity and malonyl CoA levels in normal and ischemic swine myocardium: effects of dichloroacetate.
Topics: Animals; Dichloroacetic Acid; Infusions, Intra-Arterial; Male; Malonyl Coenzyme A; Myocardial Ischemia; Pyruvate Dehydrogenase Complex; Swine | 1996 |
Calcium improves mechanical function and carbohydrate metabolism following ischemia in isolated Bi-ventricular working hearts from immature rabbits.
Topics: Adenosine Triphosphate; Animals; Animals, Newborn; Calcium; Dichloroacetic Acid; Dose-Response Relationship, Drug; Fatty Acids; Glucose; Glycogen; Heart; Heart Rate; Heart Ventricles; Lactic Acid; Myocardial Ischemia; Myocardial Reperfusion; Myocardium; Palmitates; Phosphates; Rabbits | 1996 |
Cardiac efficiency is improved after ischemia by altering both the source and fate of protons.
Topics: Acetyl Coenzyme A; Adenosine Triphosphate; Amiloride; Animals; Dichloroacetic Acid; Glucose; Glycolysis; Heart; In Vitro Techniques; Male; Myocardial Ischemia; Myocardial Reperfusion; Oxidation-Reduction; Palmitic Acid; Protons; Rats; Rats, Sprague-Dawley; Time Factors; Tricarboxylic Acids | 1996 |
Effect of nutritional state on substrate metabolism and contractile function in postischemic rat myocardium.
Topics: Animal Nutritional Physiological Phenomena; Animals; Dichloroacetic Acid; Fasting; Glucose; Male; Myocardial Contraction; Myocardial Ischemia; Myocardial Reperfusion; Myocardium; Nutritional Status; Oxidation-Reduction; Rats; Rats, Inbred Strains | 1996 |
Dichloroacetate as metabolic therapy for myocardial ischemia and failure.
Topics: Acetyl Coenzyme A; Dichloroacetic Acid; Energy Metabolism; Heart; Heart Failure; Humans; Mitochondria, Heart; Myocardial Ischemia; Myocardium; Pyruvate Dehydrogenase Complex | 1997 |
Effects of dichloroacetate on mechanical recovery and oxidation of physiologic substrates after ischemia and reperfusion in the isolated heart.
Topics: Acetoacetates; Animals; Dichloroacetic Acid; Fatty Acids; Glucose; Heart; In Vitro Techniques; Lactates; Magnetic Resonance Spectroscopy; Male; Myocardial Ischemia; Myocardial Reperfusion Injury; Oxidation-Reduction; Oxygen; Pyruvic Acid; Rats; Rats, Sprague-Dawley | 1998 |
Regulation of pyruvate dehydrogenase activity and glucose metabolism in post-ischaemic myocardium.
Topics: Animals; Dichloroacetic Acid; Dogs; Glucose; Lactic Acid; Myocardial Ischemia; Myocardial Reperfusion Injury; Oxidation-Reduction; Pyruvate Dehydrogenase Complex | 1998 |
Dual effects of dichloroacetate on cardiac ischaemic preconditioning in the rat isolated perfused heart.
Topics: Animals; Dichloroacetic Acid; Energy Metabolism; Enzyme Activation; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Male; Myocardial Ischemia; Pyruvate Dehydrogenase Complex; Rats; Rats, Wistar | 1998 |
Protective effects of ranolazine, a novel anti-ischemic drug, on the hydrogen peroxide-induced derangements in isolated, perfused rat heart: comparison with dichloroacetate.
Topics: Acetanilides; Animals; Dichloroacetic Acid; Energy Metabolism; Enzyme Activation; Hydrogen Peroxide; Lipid Peroxidation; Male; Myocardial Ischemia; Piperazines; Pyruvate Dehydrogenase Complex; Ranolazine; Rats; Rats, Sprague-Dawley; Vascular Resistance | 1998 |
Ionic and metabolic imbalance in various conditions of ischemia-reperfusion: a 31P- and 23Na-NMR study.
Topics: Animals; Anti-Arrhythmia Agents; Blood Pressure; Diastole; Dichloroacetic Acid; Enzyme Inhibitors; Guanidines; Heart; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Nuclear Magnetic Resonance, Biomolecular; Palmitic Acid; Phosphorus; Rats; Sodium; Sodium-Calcium Exchanger; Sodium-Hydrogen Exchangers; Sulfones; Trimetazidine; Vasodilator Agents | 1998 |
Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak.
Topics: Adenosine Triphosphate; Aerobiosis; Animals; Dichloroacetic Acid; Heart; Hydrogen-Ion Concentration; In Vitro Techniques; Intracellular Membranes; Kinetics; Male; Membrane Potentials; Mitochondria, Heart; Myocardial Ischemia; Myocardial Reperfusion; Myocardial Reperfusion Injury; Oxidative Phosphorylation; Oxygen Consumption; Rats; Rats, Sprague-Dawley; Time Factors | 2001 |