dibutyryl-cyclic-gmp has been researched along with Diabetes-Mellitus* in 1 studies
1 other study(ies) available for dibutyryl-cyclic-gmp and Diabetes-Mellitus
Article | Year |
---|---|
Effect of intracellular Ca2+ on insulin-like growth factor II. internalization into pancreatic acini. Roles of insulin and cholecystokinin.
Previously, we reported that pancreatic acini have specific receptors for the insulin-like growth factors (IGF) I and II. We now report that the binding of 125I-labeled IGF II to mouse pancreatic acini is maximally increased by 100 nM insulin (51%) and is maximally reduced by 10 nM cholecystokinin octapeptide (CCK8) (34%), but is not affected by other regulatory peptides such as somatostatin or glucagon. Since many polypeptide hormones are internalized, we determined whether this regulation of IGF II binding occurred via a change in internalization. Acid washing or trypsinization has been shown to remove surface-bound hormone while the acid- or trypsin-resistant radioactivity represents internalized radioligand. Insulin increased and CCK8 decreased the internalization of IGF II as determined by these techniques. Studies of IGF II binding to acini at low temperature (15 degrees C) and binding to particulate fractions from acini were also consistent with the effect of insulin to increase and CCK8 to decrease the internalization of IGF II. When insulin and CCK8 were added together, the inhibitory effect of CCK8 predominated, indicating that CCK8 acted distal to the effect of insulin. Several lines of evidence suggest that this effect of CCK8 was via the CCK receptor and was mediated via a change in intracellular Ca2+: the effect of CCK8 on inhibiting IGF II binding was blocked by the cholecystokinin antagonist N2,O2'-dibutyryl cGMP; the cholinergic agent carbachol (1-100 microM), which acts through the muscarinic receptor to increase intracellular Ca2+, also inhibited IGF II binding; the Ca2+ ionophore A23187 (1-5 microM) mimicked the effects of CCK8 and carbachol. These data indicate, therefore, that CCK8 and possibly insulin may regulate the internalization of IGF II via intracellular Ca2+. Moreover, the data raise the possibility that alterations of hormone internalization may be a general phenomenon of hormone-hormone interaction. Topics: Animals; Calcium; Diabetes Mellitus; Dibutyryl Cyclic GMP; Insulin; Kinetics; Male; Mice; Pancreas; Peptides; Receptors, Cell Surface; Receptors, Somatomedin; Sincalide; Somatomedins; Thermodynamics | 1984 |