diamide has been researched along with Carcinoma--Ehrlich-Tumor* in 2 studies
2 other study(ies) available for diamide and Carcinoma--Ehrlich-Tumor
Article | Year |
---|---|
Interactions of the carcinogen 4-nitroquinoline 1-oxide with the non-protein thiols of mammalian cells.
The carcinogen 4-nitroquinoline 1-oxide (4-NQO) was found to rapidly deplete non-protein thiols (NPSH) from Ehrlich ascites tumor cells and V79 Chinese hamster fibroblasts. The effects of NPSH on 4-NQO metabolism were studied by measuring 4-hydroxyaminoquinoline 1-oxide formation, CN- -insensitive oxygen consumption, and reduction of ferricytochromes c + c1 in normal cells and in cells pretreated with the thiol reagent N-ethylmaleimide. Removal of thiols before treatment with 4-NQO resulted in increased production of 4-hydroxyaminoquinoline 1-oxide and increased production of nitro radicals. The NPSH thus appeared to play a significant role in 4-NQO detoxification. Glutathione, when present in culture medium during 4-NQO treatment, protected V79 cells from 4-NQO toxicity. Several mechanisms for reaction of 4-NQO with intracellular NPSH were indicated. Both V79 and Ehrlich cells contained appreciable amounts of glutathione S-transferase (EC 2.5.1.18), which catalyzes the nucleophilic substitution of the nitro group of 4-NQO with thiols. Greater thiol loss under oxic than under hypoxic conditions suggested oxidation by superoxide, peroxide, or hydroxyl radical formed in the course of 4-NQO reduction. In addition, reaction of thiols with nitro radicals or with nitrosoquinoline 1-oxide was indicated by the inhibitory effect of glutathione on oxygen consumption in solutions of 4-NQO and sodium ascorbate. Topics: 4-Nitroquinoline-1-oxide; Animals; Carcinoma, Ehrlich Tumor; Cell Survival; Cells, Cultured; Cricetinae; Diamide; Electron Transport; Ethylmaleimide; Fibroblasts; Glutathione; Glutathione Transferase; Mice; Nitroquinolines; Oxygen Consumption; Sulfhydryl Compounds | 1979 |
Toxicity, radiation sensitivity modification, and metabolic effects of dehydroascorbate and ascorbate in mammalian cells.
Dehydroascorbate, an electron affinic metabolite of vitamin C, sensitized Ehrlich ascites tumor cells, in vivo, to radiation and was selectively toxic to V79 Chinese hamster lung cells under hypoxic conditions (without radiation). The radiosensitization may involve both the electron affinic nature of dehydroascorbate as well as its ability to oxidize the intracellular NAD(P)H and non-protein sulfhydryl. Dehydroascorbate's oxidation of NAD(P)H required higher concentrations than other sulfhydryl oxidants such as N-ethylmaleimide and diamide. The oxidation of NAD(P)H by dehydroascorbate could be reversed by glucose. Hypoxic cell radiosensitization of V79 cells in tissue culture by dehydroascorbate could not be easily demonstrated because of the rapid breakdown and appreciable cytotoxicity of the drug at high concentration. The cytotoxicity was found to occur with both high and low densities of V79 cells. With low cell densities small amounts of oxygen did not reduce the cytotoxicity of dehydroascorbate, but virtually eliminated the cytotoxicity of nitroaromatic electron affinic compounds (metronidazole and Ro-07-0582). The cytotoxicity to dense cell suspensions was found to depend upon the type of buffer included in the reaction medium. The maximum cytotoxicity was obtained in buffer free saline. The reduced form of dehydroascorbate, vitamin C, was found to be toxic only under aerobic conditions. The aerobic cytotoxicity could be prevented by the addition of catalase to the growth medium or by an increase in cell density, suggesting it was caused entirely by the production of H2O2 from the oxidation of vitamin C. Topics: Aerobiosis; Animals; Ascorbic Acid; Carcinoma, Ehrlich Tumor; Cell Line; Cell Survival; Cricetinae; Dehydroascorbic Acid; Diamide; Ethylmaleimide; In Vitro Techniques; Mice; NADP; Radiation-Sensitizing Agents; Sulfhydryl Compounds | 1978 |