diamide and Anemia--Sickle-Cell

diamide has been researched along with Anemia--Sickle-Cell* in 8 studies

Other Studies

8 other study(ies) available for diamide and Anemia--Sickle-Cell

ArticleYear
Erythrocyte mitogen-activated protein kinases mediate hemolytic events under osmotic and oxidative stress and in hemolytic diseases.
    Cellular signalling, 2022, Volume: 99

    p38 MAPKs are key regulators of cellular adaptation to various stress stimuli, however, their role in mediating erythrocyte cell death and hemolysis is largely unknown. We hypothesized that activation of erythrocyte p38 MAPK is a common event in the stimulation of hemolysis, and that inhibition of p38 MAPK pathways could mitigate hemolysis in hemoglobinopathies. We exposed human erythrocytes to diamide-induced oxidative stress or to hypoosmotic shock in the presence or absence of p38 MAPK inhibitors (SCIO469, SB203580, CMPD1) and used immunoblotting to determine MAPK activity and to identify possible downstream effectors of p38 MAPK. We also evaluated the impact of p38 MAPK inhibitors on stress-induced hemolysis or hypoxia-induced sickling in erythrocytes from mouse models of sickle cell disease. We found that human erythrocytes express conventional MAPKs (MKK3, p38 MAPK, MAPKAPK2) and identified differential MAPK activation pathways in each stress condition. Specifically, p38 MAPK inhibition in diamide-treated erythrocytes was associated with decreased phosphorylation of Src tyrosine kinases and Band 3 protein. Conversely, hypoosmotic shock induced MAPKAPK2 and RSK2 phosphorylation, which was inhibited by SCIO469 or CMPD1. Relevant to hemoglobinopathies, sickle cell disease was associated with increased erythrocyte MKK3, p38 MAPK, and MAPKAPK2 expression and phosphorylation as compared with erythrocytes from healthy individuals. Furthermore, p38 MAPK inhibition was associated with decreased hemolysis in response to diamide treatments or osmotic shock, and with decreased erythrocyte sickling under experimental hypoxia. These findings provided insights into MAPK-mediated signaling pathways that regulate erythrocyte function and hemolysis in response to extracellular stressors or human diseases.

    Topics: Anemia, Sickle Cell; Animals; Anion Exchange Protein 1, Erythrocyte; Diamide; Enzyme Activation; Erythrocytes; Hemoglobinopathies; Hemolysis; Humans; Hypoxia; Mice; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phosphorylation; src-Family Kinases

2022
Oxidative activation of K-Cl cotransport by diamide in erythrocytes from humans with red cell disorders, and from several other mammalian species.
    The Journal of membrane biology, 1997, Feb-01, Volume: 155, Issue:3

    Red blood cells (RBCs) from different mammalian species were investigated for the presence of diamide-induced oxidative activation of K-Cl cotransport reported to be present in sheep but absent in human RBCs. K efflux was measured in RBCs from human with hemoglobin (Hb) A or S, glucose-phosphate dehydrogenase (G6PDH) and a cytoskeletal deficiency, and from rat, mouse and rabbit. RBCs were incubated with diamide (0-1.0 mm) in K-free Cl or NO3 media of variable osmolalities (200-450 mOsM). Cl-dependent K efflux or K-Cl cotransport (estimated as the difference between K efflux rate constants in Cl and NO3) was activated by diamide in a sigmoidal fashion. Relative maximum K-Cl cotransport followed the sequence: human HbA (1) < rabbit (1.8) < sheep (6.9) < human HbS (9.5) approximately rat (9.7). Relative diamide concentrations for half maximal activation of K-Cl cotransport followed the sequence: sheep (1.9) > human Hb A (1) > rabbit (0.75) > human HbS and rat (0.67). Cell swelling in 200 mOsM doubled K-Cl cotransport in diamide, both in human HbA and S cells but reduced that in rat RBCs. In contrast, cell shrinkage at 450 mOsM obliterated K-Cl cotransport in human HbA and S but not in rat RBCs. Human RBCs with G6PDH and a cytoskeleton deficiency behaved like HbA RBCs. In mouse RBCs, diamide-activated K-Cl cotransport was 30% higher in isotonic than in hypotonic medium. In human HbA and S, and in low or high K sheep RBCs fractionated by Percoll density gradient, diamide increased the activity of K-Cl cotransport, an effect inversely correlated with cell density. Analysis of pooled data reveals that K-Cl cotransport accounted for about 80% of all K flux in Cl. There was a statistically significant correlation between K-Cl cotransport and K efflux in Cl (P < 0. 00001) and in NO3 (P < 0.00001). In conclusion, a diamide-activated K-Cl cotransport was present in human RBCs and in all other mammalian RBCs tested, with a large inter-, and for human and sheep, intraspecies variability for its maximum activity.

    Topics: Anemia, Sickle Cell; Animals; Carrier Proteins; Cell Size; Child; Chlorides; Diamide; Erythrocytes; Humans; K Cl- Cotransporters; Male; Mice; Oxidation-Reduction; Potassium; Rabbits; Rats; Rats, Sprague-Dawley; Species Specificity; Sulfhydryl Reagents; Symporters

1997
Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients.
    The Journal of clinical investigation, 1993, Volume: 92, Issue:3

    Deoxygenation of erythrocytes from sickle cell anemia (SCA) patients alters membrane phospholipid distribution with increased exposure of phosphatidylethanolamine (PE) and phosphatidylserine (PS) on the outer leaflet. This study investigated whether altered membrane phospholipid exposure on sickle erythrocytes results in complement activation. In vitro deoxygenation of sickle but not normal erythrocytes resulted in complement activation measured by C3 binding. Additional evidence indicated that this activation was the result of the alterations in membrane phospholipids. First, complement was activated by normal erythrocytes after incubation with sodium tetrathionate, which produces similar phospholipid changes. Second, antibody was not required for complement activation by sickle or tetrathionate-treated erythrocytes. Third, the membrane regulatory proteins, decay-accelerating factor (CD55) and the C3b/C4b receptor (CD35), were normal on sickle and tetrathionate-treated erythrocytes. Finally, insertion of PE or PS into normal erythrocytes induced alternative pathway activation. SCA patients in crisis exhibited increased plasma factor Bb levels compared with baseline, and erythrocytes isolated from hospitalized SCA patients had increased levels of bound C3, indicating that alternative pathway activation occurs in vivo. Activation of complement may be a contributing factor in sickle crisis episodes, shortening the life span of erythrocytes and decreasing host defense against infections.

    Topics: Anemia, Sickle Cell; Antigens, CD; CD55 Antigens; Complement Pathway, Alternative; Diamide; Erythrocyte Membrane; Humans; Membrane Glycoproteins; Membrane Lipids; Oxygen; Phosphatidylethanolamines; Phosphatidylserines; Receptors, Complement 3b

1993
Permeability characteristics of deoxygenated sickle cells.
    Blood, 1990, Nov-15, Volume: 76, Issue:10

    This study investigated the effect of acute deoxygenation on membrane permeability characteristics of sickle cells. Measured fluxes of Na+ and K+ in ouabain-inhibited cells, of chloride and sulfate exchange in 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS)-inhibited and untreated cells, and of erythritol, mannitol, and arabinose in cytochalasin B-inhibited cells indicated that a deoxygenation-induced permeability change occurred in sickle cells only for cations and chloride. Monovalent cation permeabilities increased five-fold, and chloride influx into DIDS treated cells was enhanced nearly threefold on sickle cell deoxygenation. In contrast, no detectable increase in permeability to the other solutes was found. To gain perspective on these findings, similar measurements were performed in normal cells treated with diamide, an agent shown by others to induce a coupled increase in membrane permeability and phospholipid translocation, reminiscent of deoxygenation-induced changes in sickle cells. Although the increase in cation permeability was no greater than that in sickled cells, treatment with 2 mmol/L diamide also produced a twofold increase in the first order rate constants for sulfate exchange and mannitol efflux, indicating a relatively nonselective permeability increase that permitted flux of larger solutes than in the case of deoxygenated sickle cells. These results suggest that the deoxygenation of sickle cells induces a permeability increase that is relatively insensitive to charge, but is restrictive with respect to solute size.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Anemia, Sickle Cell; Arabinose; Cell Membrane Permeability; Chlorides; Cytochalasin B; Diamide; Dose-Response Relationship, Drug; Erythritol; Erythrocyte Membrane; Humans; Mannitol; Ouabain; Oxidation-Reduction; Potassium; Sodium; Sulfates

1990
The calmodulin-stimulated (Ca2+ + Mg2+)-ATPase in hemoglobin S erythrocyte membranes: effects of sickling and oxidative agents.
    Biochimica et biophysica acta, 1987, Feb-12, Volume: 897, Issue:1

    A decrease in the reactivity of erythrocyte membrane (Ca2+ + Mg2+)-ATPase to calmodulin stimulation has been observed in aging red cells and in various types of hemolytic anemias, particularly in sickle red cell membranes. Unlike the aging process, the defect in the (Ca2+ + Mg2+)-ATPase from SS red blood cells is not secondary to a decrease in calmodulin activity and is already present in the least dense SS red blood cells separated on a discontinuous density gradient. Deoxygenated AS red cells were forced to sickle by lowering the pH, raising the osmolarity of the buffer (sickling pulse). Under these conditions an inhibition of the calmodulin-stimulated enzyme was observed only if several cycles of oxygenation/deoxygenation were applied. No alteration of the enzyme could be detected after submitting AS red blood cells to other conditions or in AA red blood cells submitted to the same treatments. This suggests that oxidative processes are involved in the alterations of the (Ca2+ + Mg2+)-ATPase activity. Treatment of membranes from AA erythrocytes by thiol group reagents and malondialdehyde, a by-product of auto-oxidation of membrane unsaturated lipids and a cross-linking agent of cytoskeletal proteins, led to a partial inhibition of the calmodulin-stimulated (Ca2+ + Mg2+)-ATPase. We postulate that the hyperproduction of free radicals described in the SS red blood cells and involved in the destabilization of the membrane may be also responsible for the (Ca2+ + Mg2+)-ATPase failure.

    Topics: Anemia, Sickle Cell; Ca(2+) Mg(2+)-ATPase; Calcium-Transporting ATPases; Calmodulin; Diamide; Erythrocyte Membrane; Ethylmaleimide; Humans; Malondialdehyde; Membrane Proteins; Oxygen; Sickle Cell Trait; Sulfhydryl Compounds

1987
Inhibition of erythrocyte Ca2+-ATPase by activated oxygen through thiol- and lipid-dependent mechanisms.
    Biochimica et biophysica acta, 1986, Nov-06, Volume: 862, Issue:1

    We have studied erythrocyte Ca2+-ATPase as a model target for elucidating effects of activated oxygen on the erythrocyte membrane. Either intracellular or extracellular generation of activated oxygen causes parallel decrements in Ca2+-ATPase activity and cytoplasmic GSH, oxidation of membrane protein thiols, and lipid peroxidation. Subsequent incubation with either dithiothreitol or glucose allows only partial recovery of Ca2+-ATPase, indicating both reversible and irreversible components which are modeled herein using diamide and t-butyl hydroperoxide. The reversible component reflects thiol oxidation, and its recovery depends upon GSH restoration. The irreversible component is largely due to lipid peroxidation, which appears to act through mechanisms involving neither malondialdehyde nor secondary thiol oxidation. However, some portion of the irreversible component could also reflect oxidation of thiols which are inaccessible for reduction by GSH, since we demonstrate existence of different classes of thiols relevant to Ca2+-ATPase activity. Activated oxygen has an exaggerated effect on Ca2+-ATPase of GSH-depleted cells. Sickle erythrocytes treated with dithiothreitol show a heterogeneous response of Ca2+-ATPase activity. These findings are potentially relevant to oxidant-induced hemolysis. They also may be pertinent to oxidative alteration of functional or structural membrane components in general, since many components share with Ca2+-ATPase both free thiols and close proximity to unsaturated lipid.

    Topics: 4-Chloromercuribenzenesulfonate; Anemia, Sickle Cell; Calcium-Transporting ATPases; Chloromercuribenzoates; Diamide; Erythrocytes; Glucosephosphate Dehydrogenase Deficiency; Glutathione; Humans; Lipid Peroxides; Oxidation-Reduction; Oxygen; Sulfhydryl Compounds

1986
Membrane phospholipid abnormalities in pathologic erythrocytes: a model for cell aging.
    Progress in clinical and biological research, 1985, Volume: 195

    Topics: Anemia, Sickle Cell; Biological Transport; Calcium; Diamide; Erythrocyte Aging; Erythrocyte Membrane; Erythrocytes, Abnormal; Humans; Membrane Fluidity; Membrane Lipids; Phosphatidylcholines; Phosphatidylserines; Phospholipids

1985
Interaction of phosphatidylserine-phosphatidylcholine liposomes with sickle erythrocytes. Evidence for altered membrane surface properties.
    The Journal of clinical investigation, 1983, Volume: 71, Issue:6

    The sickle erythrocyte (RBC) is a pathologic RBC that contains multiple membrane abnormalities. Some of these abnormalities have been implicated in the pathophysiology of vasoocclusive crises characteristic of sickle cell disease; others have yet to be defined in terms of their clinical significance. Recent information has shown that sickle RBC adhere abnormally to cultured endothelial cells yet little is known about the ways in which sickle cells interact with model membranes of defined size and lipid composition. We investigated this phenomenon by interacting sickle RBC with artificial lipid vesicles (liposomes) containing acidic phospholipids. Our results demonstrate that sickle disease (hemoglobin SS) RBC bind more of these liposomes than do normal or sickle trait (hemoglobin AS) RBC and that these differences are accentuated by hypoxia-induced sickling. Binding of liposome phospholipid to sickled RBC was not attributable to phospholipid exchange between liposomes and RBC and was consistent with a mechanism involving both membrane fusion and a stable reversible adhesion of liposomes to the RBC membrane.Investigations into the mechanism(s) underlying increased liposome binding to sickled RBC suggested that the known reversible translocation of aminophospholipids, phosphatidylserine (PS) and phosphatidyl-ethanolamine (PE), from the inner to the outer leaflet of the reversibly sickled RBC (RSC) plasma membrane during sickling may be a component of increased liposome binding to RSC. This idea was supported from results of experiments in which normal RBC were treated with diamide resulting in the expression of outer leaflet PE and PS and a stimulation of liposome binding to these cells. However, sickle RBC separated according to cell density on stractan gradients showed that irreversibly sickled RBC (ISC) were less capable of liposome binding than were discoid RSC. Since ISC are known to contain elevated levels of outer leaflet aminophospholipids, such a result suggests that other changes in the plasma membrane of sickle cells, in addition to phospholipid reorganization, are probably involved in enhanced liposome binding to these cells. In other experiments, we showed that liposomes containing l-phenylalanine were capable of delivering this antisickling agent into intact sickle RBC as demonstrated by the partial inhibition of hypoxia-induced sickling in vitro. Our results suggest that liposomes can be used as sensitive probes for investigating changes in R

    Topics: Anemia, Sickle Cell; Cell Separation; Diamide; Edetic Acid; Erythrocytes; Humans; Liposomes; Oxygen; Phenylalanine; Phosphatidylcholines; Phosphatidylserines; Pulmonary Surfactants; Sickle Cell Trait; Triolein

1983