devazepide has been researched along with Disease-Models--Animal* in 16 studies
16 other study(ies) available for devazepide and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Peptide YY3-36 and 5-hydroxytryptamine mediate emesis induction by trichothecene deoxynivalenol (vomitoxin).
Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium sp. that frequently occurs in cereal grains, has been associated with human and animal food poisoning. Although a common hallmark of DON-induced toxicity is the rapid onset of emesis, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. The goal of this study was to use this model to determine the roles of two gut satiety hormones, peptide YY3-36 (PYY3-36) and cholecystokinin (CCK), and the neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced emesis. Following ip exposure to DON at 0.1 and 0.25mg/kg bw, emesis induction ensued within 15-30min and then persisted up to 120min. Plasma DON measurement revealed that this emesis period correlated with the rapid distribution and clearance of the toxin. Significant elevations in both plasma PYY3-36 (30-60min) and 5-HT (60min) but not CCK were observed during emesis. Pretreatment with the neuropeptide Y2 receptor antagonist JNJ-31020028 attenuated DON- and PYY-induced emesis, whereas the CCK1 receptor antagonist devezapide did not alter DON's emetic effects. The 5-HT3 receptor antagonist granisetron completely suppressed induction of vomiting by DON and the 5-HT inducer cisplatin. Granisetron pretreatment also partially blocked PYY3-36-induced emesis, suggesting a potential upstream role for this gut satiety hormone in 5-HT release. Taken together, the results suggest that both PYY3-36 and 5-HT play contributory roles in DON-induced emesis. Topics: Animals; Antiemetics; Benzamides; Cholecystokinin; Devazepide; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Granisetron; Mink; Peptide Fragments; Peptide YY; Piperazines; Serotonin; Serotonin Antagonists; Time Factors; Trichothecenes; Vomiting | 2013 |
Electroacupuncture modulation of reflex hypertension in rats: role of cholecystokinin octapeptide.
Acupuncture or electroacupuncture (EA) potentially offers a nonpharmacological approach to reduce high blood pressure (BP). However, ~70% of the patients and animal subjects respond to EA, while 30% do not. EA acts, in part, through an opioid mechanism in the rostral ventrolateral medulla (rVLM) to inhibit sympathoexcitatory reflexes induced by gastric distention. CCK-8 opposes the action of opioids during analgesia. Therefore, we hypothesized that CCK-8 in the rVLM antagonizes EA modulation of sympathoexcitatory cardiovascular reflex responses. Male rats anesthetized with ketamine and α-chloralose subjected to repeated gastric distension every 10 min were examined for their responsiveness to EA (2 Hz, 0.5 ms, 1-4 mA) at P5-P6 acupoints overlying median nerve. Repeated gastric distension every 10 min evoked consistent sympathoexcitatory responses. EA at P5-P6 modulated gastric distension-induced responses. Microinjection of CCK-8 in the rVLM reversed the EA effect in seven responders. The CCK1 receptor antagonist devazepide microinjected into the rVLM converted six nonresponders to responders by lowering the reflex response from 21 ± 2.2 to 10 ± 2.9 mmHg (first vs. second application of EA). The EA modulatory action in rats converted to responders with devazepide was reversed with rVLM microinjection of naloxone (n = 6). Microinjection of devazepide in the absence of a second application of EA did not influence the primary pressor reflexes of nonresponders. These data suggest that CCK-8 antagonizes EA modulation of sympathoexcitatory cardiovascular responses through an opioid mechanism and that inhibition of CCK-8 can convert animals that initially are unresponsive to EA to become responsive. Topics: Animals; Blood Pressure; Devazepide; Disease Models, Animal; Electroacupuncture; Enkephalins; Hormone Antagonists; Hypertension; Male; Mechanotransduction, Cellular; Medulla Oblongata; Microinjections; Narcotic Antagonists; Pressure; Rats; Rats, Sprague-Dawley; Receptor, Cholecystokinin A; Reflex; Sincalide; Stomach; Time Factors | 2013 |
Behavioral and cortical EEG evaluations confirm the roles of both CCKA and CCKB receptors in mouse CCK-induced anxiety.
This study investigated the roles of cholecystokinin (CCK)(A) and CCK(B) receptors on CCK-4-induced anxiety-like behaviors in mice through behavioral and neural evaluations. Anxiety-like behaviors in mice were induced by an intracerebroventricular (i.c.v.) administration of CCK-4, which can bind to both CCK(A) and CCK(B) receptors. The effects of CCK(A) and CCK(B) receptor antagonists (devazepide and CI-988, respectively) were examined using mouse anxiety tests (elevated-plus maze and light-dark box) and also by examining neuronal activities through EEG monitoring and c-Fos immunohistochemistry in the cortex and amygdala. CCK-4 (3 μg/kg of body weight i.c.v.) significantly induced mouse anxiety-like behaviors in the anxiety tests and also affected their EEG patterns with respect to pre-drug tracing, resulting in increase in spectral power in relative power distribution in the delta and theta bands (0.5-5 Hz frequency bands) and also in increase in c-Fos immunopositive neuron counts. These CCK-4 effects were completely suppressed by 1.0mg/kg CCK(B) receptor antagonist, CI-988, while the same amount of CCK(A) receptor antagonist, devazepide was partly able to suppress the same effects. These findings indicated that not only CCK(B) receptors but also CCK(A) receptors in the brain play important roles in regulating anxiety-like behaviors in mice. The present study also proposed a possibility that cortical EEG is useful for assessing anxiety. Topics: Adaptation, Physiological; Analysis of Variance; Animals; Anxiety; Behavior, Animal; Brain; Brain Mapping; Brain Waves; Devazepide; Disease Models, Animal; Dose-Response Relationship, Drug; Electroencephalography; Gene Expression Regulation; Indoles; Injections, Intraventricular; Male; Maze Learning; Meglumine; Mice; Mice, Inbred C57BL; Receptor, Cholecystokinin A; Receptor, Cholecystokinin B; Spectrum Analysis; Tetragastrin | 2013 |
Lipid-enriched enteral nutrition controls the inflammatory response in murine Gram-negative sepsis.
Controlling the inflammatory cascade during sepsis remains a major clinical challenge. Recently, it has become evident that the autonomic nervous system reduces inflammation through the vagus nerve. The current study investigates whether nutritional stimulation of the autonomic nervous system effectively attenuates the inflammatory response in murine Gram-negative sepsis.. Controlled in vivo and ex vivo experimental study.. Research laboratory of a university hospital.. Male C57bl6 mice.. Mice were intraperitoneally challenged with lipopolysaccharide derived from Escherichia coli. Before lipopolysaccharide administration, mice were fasted or enterally fed either lipid-rich nutrition or low-lipid nutrition. Antagonists to cholecystokinin receptors or nicotinic receptors were administered before lipopolysaccharide administration. Blood and tissue samples were collected at 90 mins. Mesenteric afferent discharge was determined in ex vivo preparations in response to both nutritional compositions.. Both lipid-rich and low-lipid nutrition dose-dependently reduced lipopolysaccharide-induced tumor necrosis factor-α release (high dose: both 1.4 ± 0.4 ng/mL) compared with fasted mice (3.7 ± 0.8 ng/mL; p < .01). The anti-inflammatory effect of both nutritional compositions was mediated through cholecystokinin receptors (p < .01), activation of mesenteric vagal afferents (p < .05), and peripheral nicotinic receptors (p < .05). Lipid-rich nutrition attenuated the inflammatory response at lower dosages than low-lipid nutrition, indicating that enrichment of enteral nutrition with lipid augments the anti-inflammatory potential. Administration of lipid-rich nutrition prevented endotoxin-induced small intestinal epithelium damage and reduced inflammation in the liver and spleen compared with fasted (all p < .01) and low-lipid nutrition controls (all p < .05).. The current study demonstrates that lipid-rich nutrition attenuates intestinal damage and systemic as well as organ-specific inflammation in murine Gram-negative sepsis through the nutritional vagal anti-inflammatory pathway. These findings implicate enteral administration of lipid-enriched nutrition as a promising intervention to modulate the inflammatory response during septic conditions. Topics: Animals; Benzodiazepinones; Chlorisondamine; Devazepide; Disease Models, Animal; Endotoxemia; Enteral Nutrition; Inflammation; Lipids; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Phenylurea Compounds; Receptors, Cholecystokinin; Sepsis; Tumor Necrosis Factor-alpha | 2010 |
Z-360, a novel therapeutic agent for pancreatic cancer, prevents up-regulation of ephrin B1 gene expression and phosphorylation of NR2B via suppression of interleukin-1 β production in a cancer-induced pain model in mice.
Z-360 is an orally active cholecystokinin-2 (CCK2)/gastrin receptor antagonist currently under development as a therapeutic drug for pancreatic cancer. It was previously reported that Z-360 treatment in combination with gemcitabine prolonged the survival period in a lethal pancreatic cancer xenograft model in mice. In a phase Ib/IIa clinical study, Z-360 treatment displayed a trend of reduced pain in patients with advanced pancreatic cancer in combination with gemcitabine including analgesics such as opioids. Here, we investigated the mechanism of analgesic action of Z-360 in a severe cancer-induced pain model in mice, which is considered to be opioid-resistant, by examining ephrin B1 gene expression, N-methyl-D-aspartate receptor NR2B subunit phosphorylation, and interleukin-1β (IL-1β) production.. In a mouse model of cancer-induced pain, ephrin B1 gene expression in dorsal root ganglia (DRGs) and the phosphorylation of NR2B in the spinal cord were induced. Z-360 treatment inhibited both ephrin B1 gene expression and the phosphorylation of NR2B. In addition, IL-1β production increased in the cancer-inoculated hind paw of mice, but could be suppressed by treatment with Z-360. Moreover, we observed that the CCK1 receptor antagonist devazepide similarly suppressed up-regulation of ephrin B1 gene expression and IL-1β production, and that the intraperitoneal injection of sulfated CCK-8 induced the production of IL-1β in the cancer-inoculated region.. We have identified a novel pain cascade, in which IL-1β production in cancer-inoculated regions induces ephrin B1 gene expression in DRGs and then ephrin B1 enhances the tyrosine phosphorylation of NR2B via Eph B receptor in the spinal cord. Notably, Z-360 relieves cancer-induced pain by preventing this pain cascade through the suppression of IL-1β production, likely via the blockade of CCK1 receptor. The pre-clinical results presented here support the analgesic action of Z-360 in pancreatic cancer patients with severe, opioid-resistant pain. Pre-clinical and clinical results have demonstrated that Z-360 combined with gemcitabine represents a promising pancreatic cancer therapy approach with characteristic analgesic effects in addition to the prolongation of survival. Topics: Animals; Benzodiazepinones; Cell Line, Tumor; Devazepide; Disease Models, Animal; Ephrin-B1; Extremities; Ganglia, Spinal; Gene Expression Regulation, Neoplastic; Injections; Interleukin-1beta; Mice; Pain; Pancreatic Neoplasms; Phosphorylation; Receptors, Eph Family; Receptors, N-Methyl-D-Aspartate; Sincalide; Up-Regulation | 2010 |
Hindbrain leptin receptor stimulation enhances the anorexic response to cholecystokinin.
Leptin is thought to reduce food intake, in part, by increasing sensitivity to satiation signals, including CCK. Leptin action in both forebrain and hindbrain reduces food intake, and forebrain leptin action augments both the anorexic and neuronal activation responses to CCK. Here, we asked whether leptin signaling in hindbrain also enhances these responses to CCK. We found that food intake was strongly inhibited at 30 min after a combination of 4th-intracerebroventricular (4th-icv) leptin injection and intraperitoneal CCK administration, whereas neither hormone affected intake during this period when given alone. Leptin injections targeted directly at the dorsal vagal complex (DVC) similarly enhanced the anorexic response to intraperitoneal CCK. Intra-DVC leptin injection also robustly increased the number of neurons positive for phospho-STAT3 staining in the area surrounding the site of injection, confirming local leptin receptor activation. Conversely, the anorexic response to 4th-icv leptin was completely blocked by IP devazepide, a CCKA-R antagonist, suggesting that hindbrain leptin reduces intake via a mechanism requiring endogenous CCK signaling. We then asked whether hindbrain leptin treatment enhances the dorsomedial hindbrain, hypothalamus, or amygdala c-Fos responses to IP CCK. We found that, in contrast to the effects of forebrain leptin administration, 4th-icv leptin injection had no effect on CCK-induced c-Fos in any structures examined. We conclude that leptin signaling in either forebrain or hindbrain areas can enhance the response to satiation signals and that multiple distinct neural circuits likely contribute to this interaction. Topics: Animals; Anorexia; Cholecystokinin; Devazepide; Disease Models, Animal; Eating; Hormone Antagonists; Injections, Intraventricular; Leptin; Male; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar; Receptors, Leptin; Rhombencephalon; Satiety Response; STAT3 Transcription Factor; Vagus Nerve | 2009 |
Cholecystokinin antagonists may have detrimental effects on acute pancreatitis.
Topics: Acute Disease; Animals; Calcium; Cholecystokinin; Cytosol; Devazepide; Disease Models, Animal; Pancreas; Pancreatitis | 2006 |
Pharmacological study of IQM-97,423, a potent and selective CCK1 receptor antagonist with protective effect in experimental acute pancreatitis.
The pharmacological profile of the new CCK1 receptor antagonist IQM-97,423, (4aS,5R)-2-benzyl-5-(tert-butylaminocarbonyl-tryptophyl)amino-1,3-dioxoperhydropyrido-[1,2-c]pyrimidine, was examined in in vitro and in vivo studies and compared with typical CCK1 antagonists such as devazepide and lorglumide. IQM-97,423 showed a high affinity at [3H]-pCCK8-labeled rat pancreatic CCK1 receptors, and was virtually devoid of affinity at brain CCK2 receptors. IQM-97,423 antagonized CCK8S-stimulated alpha-amylase release from rat pancreatic acini with a potency similar to devazepide and much higher than lorglumide. In the guinea pig isolated longitudinal muscle-myenteric plexus preparation, IQM-97,423 produced a full antagonism of the contractile response elicited by CCK8S and a weaker effect on the contraction elicited by CCK4, suggesting a selective antagonism at CCK1 receptors. The protective effect of IQM-97,423 and devazepide was tested in two models of acute pancreatitis in rats, induced by injection of cerulein or by combined bile and pancreatic duct obstruction. The new compound fully prevented the cerulein-induced increase in plasma pancreatic enzymes and in pancreas weight with a potency similar to devazepide. In common bile-pancreatic duct ligature-induced acute pancreatitis, IQM-97,423 partially prevented, like devazepide, the increase in plasma pancreatic enzyme activity and in pancreas weight. Consequently, the pyridopyrimidine derivative IQM-97,423 is a potent and highly selective CCK1 receptor antagonist with preventive effects in two experimental models of acute pancreatitis and a potential therapeutic interest. Topics: Acute Disease; alpha-Amylases; Animals; Binding, Competitive; Cerebral Cortex; Cholecystokinin; Devazepide; Disease Models, Animal; Guinea Pigs; Ileum; In Vitro Techniques; Male; Mice; Muscle Contraction; Muscle, Smooth; Myenteric Plexus; Neuromuscular Junction; Pancreatitis; Peptide Fragments; Proglumide; Pyrimidinones; Rats; Rats, Wistar; Receptor, Cholecystokinin A | 2004 |
Effects of early decompression and cholecystokinin inhibition in rats with acute pancreatitis induced by bile-pancreatic-duct obstruction.
Biologic data related to pancreatic regeneration and acinar-cell homeostasis after ductal decompression would be useful in clinical settings to elucidate the time at which obstructions in human biliary acute pancreatitis (AP) should be removed. Our aim was to evaluate the outcome of AP after early removal of bile-pancreatic-duct obstruction (BPDO) and to ascertain whether cholecystokinin (CCK) blockade accelerates recovery from the disease. We conducted analysis of apoptosis and cell cycle, as well as measurements of enzyme and calcium load, in acinar cells using flow cytometry to ascertain the capability of the pancreas to regain its function after AP. Male Wistar rats were subjected to AP by means of BPDO for 6 hours and 24 hours. In other groups, the BPDO was opened 24 hours after induction; 3 days and 7 days later they were killed. Half of the rats in which the BPDO was opened were administered L364,718, a CCK-receptor antagonist (0.1 mg/kg/12 hours), 30 minutes before the induction of BPDO. Plasma amylase activity, hematocrit, and pancreatic weight returned to control values after BPDO opening. The highest degree of oxidative stress was found in the pancreases of rats subjected to BPDO for 6 hours, as indicated by the decrease in pancreatic glutathione content, but it was not restored 7 days after BPDO opening. Cell-cycle distribution, as measured with propidium iodide DNA staining, showed increases in the proportion of acinar cells in S-phase from 3 days after BPDO opening in L364,718-treated and nontreated rats. Annexin V-fluorescein isothiocyanate labeling revealed deletion of acinar cells by way of apoptosis 3 days after BPDO opening. However, it may be compensated 7 days after BPDO opening because regardless of whether rats were treated with L364,718, significant increases in synthesis and mitosis were detected. Accumulation of digestive enzymes and calcium in acinar cells was found during BPDO, but this appeared to have normalized 3 days after BPDO opening and onward in both L364,718-treated and nontreated rats. In conclusion, early removal of obstruction allowed rapid cell proliferation and prevented the progression of severe alterations within acinar cells induced by BPDO. CCK blockade does not accelerate pancreatic recovery after BPDO opening. Topics: Acute Disease; Amylases; Animals; Apoptosis; Calcium; Cell Cycle; Cholecystokinin; Cholestasis, Extrahepatic; Decompression, Surgical; Devazepide; Disease Models, Animal; Flow Cytometry; Hormone Antagonists; Male; Pancreas; Pancreatic Ducts; Pancreatitis; Rats; Rats, Wistar; Time Factors; Trypsinogen | 2003 |
Involvement of cholecystokinin receptor in the inhibition of gastrointestinal motility by estradiol in ovariectomized rats.
The effects of estradiol benzoate (EB) on gastric emptying, gastrointestinal transit and plasma levels of cholecystokinin (CCK) were studied in ovariectomized rats.. Gastrointestinal motility was assessed in rats 15 min after intragastric instillation of a test meal containing charcoal and Na2 51CrO4. Gastric emptying was determined by measuring the amount of radiolabeled chromium contained in the small intestine as a percentage of the initial amount received. Gastrointestinal transit was evaluated by calculating the geometric center of distribution of the radiolabeled marker. Blood samples were collected for E2 and CCK radioimmunoassay.. After treatment of EB (4-25 microg/kg), gastric emptying and gastrointestinal transit were inhibited, whereas plasma concentrations of E2 and CCK were increased in a dose-dependent manner. The selective CCK(A) receptor antagonists, devazepide and lorglumide, effectively attenuated the EB-induced inhibition of gastric emptying and gastrointestinal transit. L-365,260, a selective CCK(B) receptor antagonist, did not alter the EB-induced inhibition of gastric emptying and gastrointestinal transit.. The results suggest that EB inhibits gastric emptying and gastrointestinal transit in ovariectomized rats via a mechanism involving CCK stimulation and CCK(A) receptor activation. Topics: Animals; Benzodiazepinones; Cholecystokinin; Devazepide; Disease Models, Animal; Estradiol; Female; Gastric Emptying; Gastrointestinal Transit; Hormone Antagonists; Ovariectomy; Phenylurea Compounds; Proglumide; Rats; Rats, Sprague-Dawley; Receptors, Cholecystokinin; Time Factors | 2002 |
Low enzyme content in the pancreas does not reduce the severity of acute pancreatitis induced by bile-pancreatic duct obstruction.
Enzyme load in pancreas has been considered a risk factor in the development of acute pancreatitis. In order to confirm this hypothesis our aim was to analyze the development and evolution of acute pancreatitis (AP) induced by bile-pancreatic duct obstruction (BPDO) after reducing the pancreatic enzyme content. L-364,718 - a potent CCK-receptor antagonist - was administered (0.1 mg/kg/day) for 7 days before inducing AP by BPDO. The course of AP was evaluated at different times from 1.5-48 h after BPDO. Amylase and trypsinogen contents and cytosolic calcium levels were measured by flow cytometry using specific antisera against pancreatic enzymes labelled with isothiocyanate of fluorescein and Fluo 3, respectively. The severity of the disease at the different stages was evaluated by measurements of amylase activity in ascites and plasma, percentage of pancreatic fluid and haematocrit. Electron microscopy study of the pancreas showed an increased number of zymogen granules spread through the acinar cells of control rats treated with L-364,718 for 7 days, however, total enzyme content in individual acinar cells was significantly (p < 0.01) diminished. AP significantly increased intracellular amylase and trypsinogen load from 3-12 h after BPDO, and prior L-364,718 treatment enhanced the blockade of enzyme secretion. As a result, acinar enzyme content was significantly increased from earlier stages (1.5 h after BPDO). In parallel, increased cytosolic calcium levels observed up to 24 h after BPDO appeared earlier in L-364,718-treated rats than in those not treated. The severity of AP seems to have been higher in rats previously treated with the CCK-receptor antagonist as indicated by the significantly higher pancreatic fluid and amylase activity in ascites and plasma observed at different times after BPDO. Our results indicate that there is no correlation between the severity of pancreatitis and the amount of enzymes accumulated in the pancreas before the disease is induced. Topics: Acute Disease; Amylases; Animals; Bile Ducts; Calcium; Cholestasis, Extrahepatic; Devazepide; Disease Models, Animal; Male; Microscopy, Electron; Pancreas; Pancreatic Ducts; Pancreatitis; Rats; Rats, Wistar; Severity of Illness Index; Time Factors; Trypsinogen | 2002 |
Effects of spinal cholecystokinin receptor antagonists on morphine antinociception in a model of visceral pain in the rat.
The objective of the present study was to determine the effects of spinal cholecystokinin (CCK) receptor antagonists on morphine antinociception in a model of visceral nociception, colorectal distension, in rats with chronic colonic inflammation and vehicle-treated controls. Three to five days after intracolonic instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS), an enhanced visceromotor response to all pressures of colorectal distension (10-80 mm Hg) was evident. The ED(50) of intrathecal morphine (0.93 microgram) in vehicle-treated rats produced significantly greater antinociception in TNBS-treated rats. Intrathecal proglumide, a nonselective CCK receptor antagonist, dose dependently enhanced the antinociceptive effect of morphine in vehicle-treated rats, but not in TNBS-treated rats. Similarly, L-365, 260, a specific CCK(B) receptor antagonist, dose dependently increased morphine's antinociceptive effects in vehicle-treated rats but had no effect in rats with TNBS-induced colonic inflammation. L-364,718, a specific CCK(A) receptor antagonist, had no effect on morphine antinociception in either vehicle-treated or TNBS-treated rats. These data indicate that CCK, acting at the CCK(B) receptor, is involved in modulating morphine antinociception following a noxious visceral stimulus. However, CCK receptor antagonists no longer enhance morphine antinociception after instillation of intracolonic TNBS, suggesting that visceral inflammation may lead to a reduction in spinal CCK release. Topics: Analgesics; Anesthesia; Animals; Benzodiazepinones; Colitis; Colon; Devazepide; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Male; Morphine; Phenylurea Compounds; Proglumide; Rats; Rats, Sprague-Dawley; Receptors, Cholecystokinin; Rectum; Spinal Cord; Time Factors; Trinitrobenzenesulfonic Acid; Viscera | 2000 |
Role of cholecystokinin in the development and progression of acute pancreatitis and the potential of therapeutic application of cholecystokinin receptor antagonists.
This presentation reviews the role of cholecystokinin (CCK) as a contributory factor for the development and progression of acute pancreatitis (AP) and the perspective of CCK receptor antagonists for treatment of AP. High, supraphysiological concentrations of CCK induce AP in various species including man. There is also evidence that physiological increases in plasma CCK deteriorates AP in several animal models. The latter findings support the hypothesis that CCK plays a contributory or permissive role for the development of AP. The majorities of experimental studies show that the prophylactic and therapeutic use of CCK antagonists ameliorates AP. The latter effects were clearly shown for models of biliary AP in which plasma CCK is increased due to a feedback mechanism. However, CCK antagonists also had beneficial effects in models in which plasma CCK is not increased. In animal strains which do not have a CCK-A-receptor due to a genetic abnormality AP induced by a certain noxious factor does not develop to the same severity when compared to animals with a normal CCK-A-receptor. Thus, CCK acts as a permissive or contributory factor for the development and progression of AP. There is also evidence that CCK antagonists have a potential therapeutic benefit. Clinical studies will evaluate their therapeutic potential for patients with AP. Topics: Acute Disease; Animals; Ceruletide; Cholecystokinin; Devazepide; Disease Models, Animal; Disease Progression; Humans; Indoles; Pancreatitis; Rats; Receptors, Cholecystokinin | 1999 |
Pharmacological evaluation of IQM-95,333, a highly selective CCKA receptor antagonist with anxiolytic-like activity in animal models.
1. The pyridopyrimidine derivative IQM-95,333 ((4aS,5R)-2-benzyl-5-[N alpha-tert-butoxicarbonyl)L-tryptophyl] amino-1,3dioxoperhydropyrido[1,2-c]pyrimidine), a new non-peptide antagonist of cholecystokinin type A (CCKA) receptors, has been evaluated in vitro and in vivo in comparison with typical CCKA and CCKB receptor antagonists, such as devazepide, lorglumide, L-365,260 and PD-135,158. 2. IQM-95,333 displaced [3H]-CCK-8S binding to CCKA receptors from rat pancreas with a high potency in the nanomolar range. Conversely, the affinity of this new compound at brain CCKB receptors was negligible (IC50 > 10 microM). IQM-95,333 was a more selective CCKA receptor ligand than devazepide and other CCKA receptor antagonists. 3. Like devazepide, IQM-95,333 was a more potent antagonist of CCK-8S- than of CCK-4-induced contraction of the longitudinal muscle from guinea-pig ileum, suggesting selective antagonism at CCKA receptors. 4. IQM-95,333 and devazepide were also potent inhibitors of CCK-8S-stimulated amylase release from isolated pancreatic acini, a CCKA receptor-mediated effect. The drug concentrations required (IC50s around 20 nM) were higher than in binding studies to pancreas homogenates. 5. Low doses (50-100 micrograms kg-1, i.p.) of IQM-95,333 and devazepide, without any intrinsic effect on food intake or locomotion, blocked the hypophagia and the hypolocomotion induced by systemic administration of CCK-8S, two effects associated with stimulation of peripheral CCKA receptors. 6. IQM-95,333 showed an anxiolytic-like profile in the light/dark exploration test in mice over a wide dose range (10-5,000 micrograms kg-1). Typical CCKA and CCKB antagonists, devazepide and L-365,260 respectively, were only effective within a more limited dose range. 7. In a classical conflict paradigm for the study of anxiolytic drugs, the punished-drinking test, IQM-95,333, devazepide and L-365,260 were effective within a narrow dose range. The dose-response curve for the three drugs was biphasic, suggesting that other mechanisms are operative at higher doses. 8. In conclusion, IQM-95,333 is a potent and selective CCKA receptor antagonist both in vitro and in vivo with an anxiolytic-like activity in two different animal models, which can only be attributed to blockade of this CCK receptor subtype. Topics: Amylases; Animals; Anorexia; Anti-Anxiety Agents; Benzodiazepinones; Carbamates; Cholecystokinin; Devazepide; Diazepam; Disease Models, Animal; Fenfluramine; Guinea Pigs; Hormone Antagonists; Locomotion; Male; Mice; Phenylurea Compounds; Pyrimidinones; Rats; Rats, Wistar; Receptors, Cholecystokinin; Selective Serotonin Reuptake Inhibitors | 1997 |
Action of CCK on CDE diet-induced acute pancreatitis in rats treated with hydrocortisone.
The present work studies the effect of previous hydrocortisone administration (10 mg/kg/day) over 7 days on the later development of diet-induced acute pancreatitis in the rat. Acute pancreatitis was induced by feeding a diet deficient in choline and supplemented with 0.5% ethionine (CDE diet) over 10 days. Hydrocortisone pretreatment exacerbated CDE-induced acute pancreatitis. There was a significant increase in serum amylase, pancreatic edema, and haematocrit levels and an insignificant decrease in pancreatic mass in rats pretreated with hydrocortisone. Pancreatic enzyme secretion was strongly reduced in the rats subjected to acute pancreatitis, and although the drop in enzyme levels did not reach statistical significance, the values of secretion were even further reduced in the animals treated with hydrocortisone, pointing to the absence of pancreatic functionality. This effect can be attributed to enzyme storage elicited by previous hydrocortisone administration; activated intracellularly, these enzymes could aggravate the pathology. Administration of the cholecystokinin octapeptide (CCK-8) (10 micrograms/kg/day) during the development of acute pancreatitis in animals pretreated with hydrocortisone substantially improved the general state of the animals' pancreases. There was a significant decrease in serum amylase, pancreatic edema and haematocrit levels in rats injected with CCK, which was accompanied by an increase in pancreatic functionality. Conversely, the administration of L-364,718 (0.1 mg/kg/day), a CCK antagonist, did not improve pancreatic functionality and did not appreciably affect the general state of the organ. It is concluded that in rats with storage levels increased by hydrocortisone administration that are subjected to acute pancreatitis, the secretagogue effect of CCK is more beneficial than the repose of the gland induced by L-364,718.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Amylases; Analysis of Variance; Animals; Antimetabolites; Benzodiazepinones; Choline; Devazepide; Disease Models, Animal; Ethionine; Hydrocortisone; Male; Organ Size; Pancreas; Pancreatitis; Rats; Rats, Wistar; Sincalide | 1995 |