desmosine and Pseudoxanthoma-Elasticum

desmosine has been researched along with Pseudoxanthoma-Elasticum* in 4 studies

Reviews

1 review(s) available for desmosine and Pseudoxanthoma-Elasticum

ArticleYear
Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases.
    The Journal of investigative dermatology, 1979, Volume: 72, Issue:1

    The elastic fibers present in various connective tissues of the body are responsible for physiologic elasticity of the organs. These fibers consist of 2 distinct components, elastin and the elastic fiber microfibrils. Controlled synthesis and balanced interaction of these 2 components are essential for normal fibrillogenesis. The intracellular biosynthesis of elastin by connective tissue cells, such as smooth muscle cells, involves assembly of the polypeptide chains on the membrane-bound ribosomes, hydroxylation of some prolyl residues to hydroxyproline, and secretion of the polypeptides packaged in Golgi vacuoles. In the extracellular space the elastin molecules assemble into fiber structures which are stabilized by the synthesis of complex covalent cross-links, desmosines. Recently, aberrations in the structure or metabolism of elastin have been detected in a variety of heritable and acquired diseases affecting skin and other connective tissues. These conditions include pseudoxanthoma elasticum, cutis laxa, and elastosis perforans serpiginosa, as well as arteriosclerosis and other degenerative changes of the vascular connective tissues.

    Topics: Amino Acids; Arteriosclerosis; Chemical Phenomena; Chemistry; Collagen Diseases; Connective Tissue; Contractile Proteins; Cutis Laxa; Desmosine; Ehlers-Danlos Syndrome; Elastic Tissue; Elastin; Female; Glycoproteins; Humans; Hydroxyproline; Marfan Syndrome; Menkes Kinky Hair Syndrome; Muscle Proteins; Pancreatic Elastase; Peptide Biosynthesis; Protein Precursors; Pseudoxanthoma Elasticum; X Chromosome

1979

Other Studies

3 other study(ies) available for desmosine and Pseudoxanthoma-Elasticum

ArticleYear
High levels of desmosines in urine and plasma of patients with pseudoxanthoma elasticum.
    European journal of clinical investigation, 2004, Volume: 34, Issue:2

    Pseudoxanthoma elasticum (PXE), a rare heritable disorder caused by mutations of the ABCC6 gene, is characterized by fragmentation and mineralization of elastic fibres. We determined the extent of degradation of elastin by measuring and comparing the amount of desmosines in plasma and urine of PXE patients, healthy carriers and normal subjects.. Using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) we measured the amount of desmosines in the urine of 46 individuals (14 PXE patients, 17 healthy carriers and 15 controls) and in the plasma of 56 subjects (18 PXE patients, 23 healthy carriers and 15 controls). Pseudoxanthoma elasticum patients and carriers were identified by clinical, structural and molecular biology analyses.. The urinary excretion of desmosines was two-fold higher in PXE patients than in controls (P < 0.01); the values for healthy carriers were intermediate between those of PXE patients and controls. A very similar trend between patients and their relatives was observed for plasma desmosines. There was a significant correlation between the amount of the desmosines in plasma and urine. Moreover, a positive correlation was observed between urinary desmosine content and age of the patients as well as between urinary desmosine content and severity of clinical manifestations.. Both the urinary and plasma desmosine concentrations indicate that elastin degradation is higher in PXE patients and, to a lesser extent, in healthy carriers than in normal subjects. Data seem to indicate that the amount of elastin breakdown products correlates with the age of patients as well as with the severity of the disease.

    Topics: Adult; Aging; Desmosine; Electrophoresis, Capillary; Female; Heterozygote; Humans; Linear Models; Male; Middle Aged; Pseudoxanthoma Elasticum; Severity of Illness Index

2004
Determination of desmosines in elastin-related skin disorders by isocratic high-performance liquid chromatography.
    Experimental and molecular pathology, 1990, Volume: 52, Issue:1

    Abnormalities in the amount of skin elastin occur in several cutaneous disorders. The number of elastic fibers is increased in elastotic disorders such as pseudoxanthoma elasticum (PXE) and cutis rhomboidalis nuchae (actinic elastosis, AE) and is decreased in elastolytic disorders such as cutis laxa (CL). We describe a procedure to quantify desmosines and elastin in small amounts of skin using high-performance liquid chromatography (HPLC). Biopsies were obtained from normal, nonsolar exposed skin and from the lesional skin of patients with PXE, cutis rhomboidalis nuchae, and CL. Specimens were subjected to hot alkali treatment and the desmosines were released by acid hydrolysis and quantified by HPLC. The mean value for normal skin was 252 +/- 28 ng desmosines per milligram wet weight (SD, n = 5). The disorders of elastosis (PXE and AE) demonstrated a two- to fivefold increased content of desmosines. In contrast, the elastolytic disorder (CL) had only 20% of the normal content of desmosines. Furthermore, PXE and normal skin elastins had the same amount of desmosines per milligram purified elastin. This method could be used to evaluate the extent of elastosis or elastolysis in a particular lesion.

    Topics: Adult; Aged; Amino Acids; Chromatography, High Pressure Liquid; Cutis Laxa; Desmosine; Elastin; Humans; Isodesmosine; Middle Aged; Pseudoxanthoma Elasticum; Skin; Skin Diseases

1990
Elastic fibers in human skin: quantitation of elastic fibers by computerized digital image analyses and determination of elastin by radioimmunoassay of desmosine.
    Laboratory investigation; a journal of technical methods and pathology, 1983, Volume: 49, Issue:4

    The elastic fibers in the skin and other organs can be affected in several disease processes. In this study, we have developed morphometric techniques that allow accurate quantitation of the elastic fibers in punch biopsy specimens of skin. In this procedure, the elastic fibers, visualized by elastin-specific stains, are examined through a camera unit attached to the microscope. The black and white images sensing various gray levels are then converted to binary images after selecting a threshold with an analog threshold selection device. The binary images are digitized and the data analyzed by a computer program designed to express the properties of the image, thus allowing determination of the volume fraction occupied by the elastic fibers. As an independent measure of the elastic fibers, alternate tissue sections were used for assay of desmosine, an elastin-specific cross-link compound, by a radioimmunoassay. The clinical applicability of the computerized morphometric analyses was tested by examining the elastic fibers in the skin of five patients with pseudoxanthoma elasticum or Buschke-Ollendorff syndrome. In the skin of 10 healthy control subjects, the elastic fibers occupied 2.1 +/- 1.1% (mean +/- SD) of the dermis. The volume fractions occupied by the elastic fibers in the lesions of pseudoxanthoma elasticum or Buschke-Ollendorff syndrome were increased as much as 6-fold, whereas the values in the unaffected areas of the skin in the same patients were within normal limits. A significant correlation between the volume fraction of elastic fibers, determined by computerized morphometric analyses, and the concentration of desmosine, quantitated by radioimmunoassay, was noted in the total material. These results demonstrate that computerized morphometric techniques are helpful in characterizing disease processes affecting skin. This methodology should also be applicable to other tissues that contain elastic fibers and that are affected in various heritable and acquired diseases.

    Topics: Amino Acids; Desmosine; Diagnosis, Computer-Assisted; Elastic Tissue; Elastin; Histological Techniques; Humans; Pseudoxanthoma Elasticum; Radioimmunoassay; Skin

1983