desmethyl-way-100635 has been researched along with Depressive-Disorder--Major* in 3 studies
1 review(s) available for desmethyl-way-100635 and Depressive-Disorder--Major
Article | Year |
---|---|
Imaging the serotonin 1A receptor using [11C]WAY100635 in healthy controls and major depression.
As a neurotransmitter, serotonin (5-HT) is widely used throughout the brain and known to play a role in many processes including emotion and brain development. Of the 15 subtypes of 5-HT receptors, the 1A receptor (5-HT(1A)) has been implicated in depression and suicide. Using the [carbonyl-(11)C]WAY100635 ([(11)C]WAY) ligand and positron emission tomography, we have studied the 5-HT(1A) receptor, first in a group of healthy controls, then in two separate groups of subjects with major depressive disorder (MDD) (antidepressant exposed and not recently medicated), and, lastly, in a group of subjects remitted from MDD. All MDD subjects were medication-free at the time of scan. We found higher 5-HT(1A) binding potential (BP(F)) in MDD subjects not recently exposed to an antidepressant compared with controls and recently medicated MDD subjects; and higher BP(F) in subjects with the C(-1019)G promoter polymorphism. We replicated these findings in a novel cohort and reconciled our discrepant findings with other groups using alternate quantification techniques. We also reported higher BP(F) in subjects remitted from a major depressive episode than in controls. From this work, we proposed a temporal model in which 5-HT(1A) BP(F) may be a trait abnormality of MDD. To further explore the genetic components of MDD and utility of 5-HT(1A) imaging as a potential tool for biomarker or treatment response prediction, these findings should be replicated in a larger cohort using the [(11)C]CUMI-101 agonist tracer. Topics: Antidepressive Agents; Biomarkers; Case-Control Studies; Depressive Disorder, Major; Humans; Ligands; Piperazines; Polymorphism, Genetic; Positron-Emission Tomography; Promoter Regions, Genetic; Protein Binding; Pyridines; Receptor, Serotonin, 5-HT1A | 2013 |
2 other study(ies) available for desmethyl-way-100635 and Depressive-Disorder--Major
Article | Year |
---|---|
Genetic variation in brain-derived neurotrophic factor val66met allele is associated with altered serotonin-1A receptor binding in human brain.
Brain Derived Neurotrophic Factor (BDNF) regulates brain synaptic plasticity. BDNF affects serotonin signaling, increases serotonin levels in brain tissue and prevents degeneration of serotonin neurons. These effects have hardly been studied in human brain. We examined the relationship of the functional val66met polymorphism of the BDNF gene to serotonin 1A (5-HT(1A)) receptor binding in vivo. 50 healthy volunteers (HV) and 50 acutely depressed, unmedicated patients with major depressive disorder (MDD) underwent PET scanning with the 5-HT(1A) receptor ligand, [(11)C]WAY-100635 and a metabolite corrected arterial input function. A linear mixed effects model compared 5-HT(1A) receptor binding potential (BP(F), proportional to the number of available receptors) in 13 brain regions of interest between met allele carriers (met/met and val/met) and noncarriers (val/val) using sex and C-1019G genotype of the 5-HT(1A) receptor promoter functional polymorphism as covariates. There was an interaction between diagnosis and allele (F=4.23, df=1, 94, p=0.042), such that met allele carriers had 17.4% lower BP(F) than non-met carriers in the HV group (t=2.6, df=96, p=0.010), but not in the MDD group (t=-0.4, df=96, p=0.58). These data are consistent with a model where the met allele of the val66met polymorphism causes less proliferation of serotonin synapses, and consequently fewer 5-HT(1A) receptors. In MDD, however, the effect of the val66met polymorphism is not detectable, possibly due to a ceiling effect of over-expression of 5-HT(1A) receptors in mood disorders. Topics: Adolescent; Adult; Aged; Alleles; Brain; Brain-Derived Neurotrophic Factor; Depression; Depressive Disorder, Major; Female; Genetic Association Studies; Genetic Predisposition to Disease; Genetic Variation; Humans; Male; Middle Aged; Piperazines; Polymorphism, Genetic; Polymorphism, Single Nucleotide; Positron-Emission Tomography; Protein Binding; Pyridines; Radiopharmaceuticals; Receptor, Serotonin, 5-HT1A; Statistics as Topic; Tissue Distribution; Young Adult | 2014 |
Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: an in-vivo imaging study using PET and [carbonyl-11C]WAY-100635.
Serotonin (5-HT) is involved in the pathophysiology of major depressive disorder (MDD). Among the numerous serotonergic receptors, the 5-HT1A receptor subtype is of interest because of its involvement in cognition, hippocampal neurogenesis, and mechanism of action of antidepressant drugs. Previous imaging studies have suggested altered availability of 5-HT1A receptors in MDD but prior antidepressant medication and chronicity of the illness may confound the interpretation. We examined 21 drug-naive primary-care patients with MDD using positron emission tomography (PET) imaging with [carbonyl-11C]WAY-100635, a radioligand for 5-HT1A receptors, along with 15 healthy control subjects. Binding to receptors was assessed both regionally and at voxel level with the binding potential (BP) that was estimated using arterial blood input. Compared with healthy controls, the BP of [carbonyl-11C]WAY-100635 was reduced in patients with MDD in most brain regions, ranging from -9% to -25%. Voxel-level analysis confirmed this finding by showing a widespread reduction of [carbonyl-11C]WAY-100635 BP. No statistically significant associations were observed between BP and total HAMD scores in the patients, but lower BP was associated with higher likelihood of insomnia. This study demonstrated a widespread reduction in the availability of serotonin 5-HT1A receptors in a relatively large sample of drug-naive primary-care patients with MDD, suggesting the involvement of this receptor subtype in the pathophysiology of the illness. Lack of correlation with overall severity of the illness may relate to a largely trait-like nature of this abnormality in depressive disorders. Topics: Adult; Brain; Brain Chemistry; Depressive Disorder, Major; Female; Humans; Image Interpretation, Computer-Assisted; Male; Piperazines; Positron-Emission Tomography; Psychiatric Status Rating Scales; Pyridines; Receptor, Serotonin, 5-HT1A; Serotonin Antagonists | 2008 |