dermaseptin-s and Neoplasms

dermaseptin-s has been researched along with Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for dermaseptin-s and Neoplasms

ArticleYear
Combined Thermosensitive Gel Co-Loaded with Dermaseptin-PP and PTX Liposomes for Effective Local Chemotherapy.
    International journal of nanomedicine, 2023, Volume: 18

    Chemotherapeutic drugs are often ineffective due to the delivery. Local chemotherapy, which has high drug concentration, low systemic toxicity, and long duration, has shown excellent potential. Cationic antimicrobial peptides have been proved to enhance the tumor cells' uptake of chemotherapeutic drugs through the membrane-breaking effect. In this study, we designed and developed a thermosensitive gel co-loaded with Dermaseptin-PP and paclitaxel liposomes to increase local chemotherapy.. The paclitaxel liposomes were prepared. Then, it was co-loaded with Dermaseptin-PP in a poloxamer-based thermosensitive gel to obtain Dermaseptin-PP/paclitaxel liposomes gel. The thermosensitivity of gels was investigated by test tube inversion method. The rheology was tested by rheometer. The in vitro cytotoxicity and the permeation in tumor of gels were examined by H157 cells and the 3D cell model, respectively. The retention in tumor and antitumor activity of gels were evaluated by H157 tumor-bearing nude mice.. The particle size of paclitaxel liposomes was 148.97 ± 0.21 nm. The encapsulation rate was 86.1%, and the drug loading capacity was 19.4%. The gels had slow-release and temperature-sensitive properties. The porous 3D network structure of the gels could ensure that the drug was fixed into the tumor. In vitro and in vivo distribution studies showed that Dermaseptin-PP promoted the permeation of the gels in H157 multicellular tumor spheres and achieved longer retention in tumor. In vitro and in vivo antitumor studies demonstrated that Dermaseptin-PP/paclitaxel liposomes gel significantly inhibited the growth of tumors for local chemotherapy with good biosafety.. This study provided a promising nanomedicine platform for combining antimicrobial peptides and chemotherapeutic drugs for local chemotherapy.

    Topics: Animals; Cell Line, Tumor; Drug Delivery Systems; Hydrogels; Liposomes; Mice; Mice, Nude; Neoplasms; Paclitaxel

2023
Stimulus-responsive nano lipidosome for enhancing the anti-tumour effect of a novel peptide Dermaseptin-PP.
    IET nanobiotechnology, 2023, Volume: 17, Issue:4

    Dermaseptin-PP is a newly discovered anticancer peptide with a unique antitumour mechanism and remarkable effect. However, this α-helix anticancer peptide risks haemolysis when used at high doses, which limits its further application. This study aims to prepare a pH-responsive liposome, Der-loaded-pHSL, using nanotechnology to avoid the haemolysis risk of Dermaseptin-PP and increase its accumulation in tumour sites to enhance efficacy and reduce toxicity.. The characterisation of Der-loaded-pHSL was carried out employing preparation. The effect of haemolysis and tumour inhibition were investigated by in vitro haemolysis assay and cytotoxicity assay. The cell uptake under different pH conditions was investigated by flow cytometry, and the effect of pH on tumour cell selectivity was evaluated. In order to evaluate the in vivo targeting and antitumour effect of Der-loaded-pHSL, the in vivo distribution experiment and the pharmacodynamic experiment were performed using the nude mouse tumour model.. The preparation method of the Der-loaded-pHSL is simple, and the liposome has good nanoparticle characteristics. When Dermaseptin-PP was prepared as liposome, haemolysis was significantly decreased, and tumour cell inhibition was significantly enhanced. Compared with ordinary liposomes, this change was more significant in Der-loaded-pHSL. The uptake of pH-sensitive liposomes was higher in the simulated acidic tumour microenvironment, and the uptake showed a specific acid dependence. In vivo experiments showed that Der-loaded-pHSL had a significant tumour-targeting effect and could significantly enhance the antitumour effect of Dermaseptin-PP.. Der-loaded-pHSL designed in this study is a liposome with a quick, simple, effective preparation method, which can significantly reduce the haemolytic toxicity of Dermaseptin-PP and enhance its antitumour effect by increasing the tumour accumulation and cell intake. It provides a new idea for applying Dermaseptin-PP and other anticancer peptides with α-helical structure.

    Topics: Amphibian Proteins; Animals; Antimicrobial Cationic Peptides; Cell Line, Tumor; Hemolysis; Liposomes; Mice; Neoplasms; Tumor Microenvironment

2023
Antitumor Activity and Mechanism of Action of Hormonotoxin, an LHRH Analog Conjugated to Dermaseptin-B2, a Multifunctional Antimicrobial Peptide.
    International journal of molecular sciences, 2021, Oct-20, Volume: 22, Issue:21

    Prostate cancer is the most common cancer in men. For patients with advanced or metastatic prostate cancer, available treatments can slow down its progression but cannot cure it. The development of innovative drugs resulting from the exploration of biodiversity could open new therapeutic alternatives. Dermaseptin-B2, a natural multifunctional antimicrobial peptide isolated from Amazonian frog skin, has been reported to possess antitumor activity. To improve its pharmacological properties and to decrease its peripheral toxicity and lethality we developed a hormonotoxin molecule composed of dermaseptin-B2 combined with d-Lys

    Topics: Amino Acid Sequence; Amphibian Proteins; Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Antimicrobial Peptides; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Movement; Cell Survival; Gonadotropin-Releasing Hormone; Humans; Immunologic Factors; Mice; Mice, Nude; Neoplasms; Xenograft Model Antitumor Assays

2021