delavirdine-mesylate and HIV-Infections

delavirdine-mesylate has been researched along with HIV-Infections* in 2 studies

Other Studies

2 other study(ies) available for delavirdine-mesylate and HIV-Infections

ArticleYear
Design, synthesis and anti-HIV evaluation of novel diarylnicotinamide derivatives (DANAs) targeting the entrance channel of the NNRTI binding pocket through structure-guided molecular hybridization.
    European journal of medicinal chemistry, 2014, Nov-24, Volume: 87

    Through a structure-based molecular hybridization approach, a novel series of diarylnicotinamide derivatives (DANAs) targeting the entrance channel of HIV-1 NNRTIs binding pocket (NNIBP) were rationally designed, synthesized and evaluated for their anti-HIV activities in MT-4 cells together with the inhibition against the reverse transcriptase (RT) in an enzymatic assay. Encouragingly, most of the new DANAs were found to be active against wild-type HIV-1 with an EC50 in the range of 0.027-4.54 μM. Among them, compound 6b11 (EC50 = 0.027 μM, SI > 12518) and 6b5 (EC50 = 0.029 μM, SI = 2471) were identified as the most potent inhibitors, which were more potent than the reference drugs nevirapine (EC50 = 0.31 μM) and delavirdine (EC50 = 0.66 μM). Some DANAs were also active at micromolar concentrations against the K103N + Y181C resistant mutant. Compound 6b11 exhibited the highest enzymatic inhibition activity (IC50 = 20 nM), which is equal to that of efavirenz (EC50 = 20 nM) and 31 times higher than that of nevirapine (EC50 = 0.62 μM). Preliminary structure-activity relationships (SARs) and molecular modeling of these new DANAs have been discussed.

    Topics: Anti-HIV Agents; Catalytic Domain; Dose-Response Relationship, Drug; Drug Design; HIV Infections; HIV Reverse Transcriptase; HIV-1; Humans; Models, Molecular; Molecular Structure; Niacinamide; Protein Conformation; Reverse Transcriptase Inhibitors; Structure-Activity Relationship; Tumor Cells, Cultured

2014
Arylazolylthioacetanilide. Part 8: Design, synthesis and biological evaluation of novel 2-(2-(2,4-dichlorophenyl)-2H-1,2,4-triazol-3-ylthio)-N-arylacetamides as potent HIV-1 inhibitors.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:10

    The development of novel HIV-1 NNRTIs offers the possibility of generating novel structures with increased potency. Based on the bioisosteric principle, a novel series of 2-(2-(2,4-dichlorophenyl)-2H-1,2,4-triazol-3-ylthio)-N-arylacetamide derivatives were designed, synthesized using a simple and efficient synthetic route, structurally confirmed by spectral analysis, evaluated for their anti-HIV activity in MT-4 cells and their inhibitory effect on HIV-1 RT. The results showed that some of the new compounds displayed low micromolar potency for inhibiting HIV-1 replication and promising activities against several selected resistant strains that confer resistance to current NNRTIs. However, all newly synthesized derivatives were not active against HIV-2 replication.

    Topics: Acetamides; Anti-HIV Agents; Cell Line; HIV Infections; HIV Reverse Transcriptase; HIV-1; HIV-2; Humans; Reverse Transcriptase Inhibitors; Structure-Activity Relationship; Triazoles; Virus Replication

2011