dehydroxymethylepoxyquinomicin has been researched along with Retinitis* in 2 studies
2 other study(ies) available for dehydroxymethylepoxyquinomicin and Retinitis
Article | Year |
---|---|
Amelioration of experimental autoimmune uveoretinitis with nuclear factor-{kappa}B Inhibitor dehydroxy methyl epoxyquinomicin in mice.
Purpose. Experimental autoimmune uveoretinitis (EAU), a Th1/Th17 cell-mediated autoimmune disease induced in mice, serves as a model of human endogenous uveitis. In this model, proinflammatory cytokines and various stimuli activate the transcriptional factor, nuclear factor-kappaB (NF-kappaB), in the retina. The therapeutic effect of the NF-kappaB inhibitor, dehydroxy methyl epoxyquinomicin (DHMEQ), was examined on EAU. Methods. EAU was induced in B10.BR mice by K2 peptide immunization. DHMEQ (40 mg/kg/d) was administered daily by intraperitoneal injection. Clinical severity and histopathologic severity were assessed. Translocation of NF-kappaB p65 into the nucleus in EAU retina was assessed. T cells were collected from draining lymph nodes of the K2-immunized mice to examine antigen (Ag)-specific T-cell active responses and cytokine production in vitro. Results. Disease onset was significantly delayed in DHMEQ-treated mice (15.6 days) compared with untreated mice (12.6 days; P < 0.01). Histologic severity was significantly milder in DHMEQ-treated mice (score, 1.13) than in controls (score, 2.33; P < 0.05). DHMEQ suppressed the Ag-specific T-cell active responses and downregulated the productions of Th-1 type cytokines in vitro in a dose-dependent manner. Alternation was not observed in Th-2 type cytokines. Pretreatment of primed T cells or Ag-presenting cells with DHMEQ reduced T-cell activation and Th1/Th17 cytokine production. DHMEQ treatment suppressed the translocation of the NF-kappaB p65 subunit into the nuclei. Conclusions. Systemic administration of DHMEQ suppressed NF-kappaB translocation in the retina, which might have reduced the inflammation of ocular tissues. DHMEQ-mediated regulation of NF-kappaB p65 could be a therapeutic target for the control of endogenous ocular inflammatory diseases. Topics: Animals; Antigen-Presenting Cells; Autoimmune Diseases; Benzamides; Cell Nucleus; Cyclohexanones; Cytokines; Disease Models, Animal; Down-Regulation; Female; Fluorescent Antibody Technique, Indirect; Injections, Intraperitoneal; Lymphocyte Activation; Mice; Microscopy, Confocal; Retina; Retinitis; T-Lymphocytes; Transcription Factor RelA; Uveitis | 2010 |
Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappaB pathway.
To investigate the involvement of the renin-angiotensin system (RAS) and the nuclear factor (NF)-kappaB pathway with diabetes-induced retinal inflammation.. Six weeks after induction of diabetes, C57BL/6 mice were treated with the angiotensin II type 1 receptor (AT1-R) blocker (ARB) telmisartan or valsartan, the AT2-R blocker PD123319, or the NF-kappaB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) daily for 1 week. Retinal mRNA and protein levels of the RAS components were examined by RT-PCR and Western blot, respectively. Leukocyte adhesion to the retinal vasculature was evaluated with a concanavalin A lectin perfusion-labeling technique. Retinal expression levels of intercellular adhesion molecule (ICAM)-1 and vascular endothelial growth factor (VEGF) were examined by RT-PCR and ELISA. ARB or DHMEQ was applied to murine capillary endothelial (b-End3) cells stimulated with a high concentration of glucose to analyze nuclear translocation of NF-kappaB via immunohistochemistry for p65 and mRNA and protein levels of ICAM-1 and monocyte chemotactic protein (MCP)-1.. Induction of diabetes led to a significant increase in retinal expression and production of the RAS components including angiotensin II, AT1-R, and AT2-R. Retinal adherent leukocytes were significantly suppressed by AT1-R, but not by AT2-R, blockade. Administration of the ARB, but not of PD123319, inhibited diabetes-induced retinal expression of ICAM-1 and VEGF. DHMEQ also suppressed these cellular and molecular inflammatory parameters in the diabetic retina to the levels obtained with ARB treatment. In vitro, glucose-induced nuclear translocation of NF-kappaB p65 and upregulation of ICAM-1 and MCP-1 were significantly suppressed by application of the ARB. The in vivo treatment with the ARB, as well as DHMEQ, attenuated the diabetes-induced retinal expression of angiotensin II and AT1-R, per se.. The present data revealed significant a contribution of the AT1-R/NF-kappaB pathway to diabetes-induced retinal inflammation, providing a mechanistic reason for targeting AT1-R or NF-kappaB in the treatment of diabetic retinopathy. Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Benzamides; Blotting, Western; Cell Adhesion; Chemokine CCL2; Cyclohexanones; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Enzyme-Linked Immunosorbent Assay; Imidazoles; Intercellular Adhesion Molecule-1; Leukocytes; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Pyridines; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Retinitis; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tetrazoles; Thiazolidines; Valine; Valsartan; Vascular Endothelial Growth Factor A | 2007 |