deferoxamine has been researched along with Acquired Metabolic Diseases, Brain in 2 studies
Deferoxamine: Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form.
desferrioxamine B : An acyclic desferrioxamine that is butanedioic acid in which one of the carboxy groups undergoes formal condensation with the primary amino group of N-(5-aminopentyl)-N-hydroxyacetamide and the second carboxy group undergoes formal condensation with the hydroxyamino group of N(1)-(5-aminopentyl)-N(1)-hydroxy-N(4)-[5-(hydroxyamino)pentyl]butanediamide. It is a siderophore native to Streptomyces pilosus biosynthesised by the DesABCD enzyme cluster as a high affinity Fe(III) chelator.
Excerpt | Relevance | Reference |
---|---|---|
" Considering that creatine kinase (CK) is important for brain energy homeostasis and is inhibited by free radicals, and that oxidative stress is probably involved in the pathogenesis of uremic encephalopathy, we measured CK activity (hippocampus, striatum, cerebellum, cerebral cortex and prefrontal cortex) in brain if rats submitted to renal ischemia and the effect of administration of antioxidants (N-acetylcysteine, NAC and deferoxamine, DFX) on this enzyme." | 7.74 | Inhibition of brain creatine kinase activity after renal ischemia is attenuated by N-acetylcysteine and deferoxamine administration. ( Burigo, M; Constantino, L; Dal-Pizzol, F; Di-Pietro, PB; Dias, ML; Machado, RA; Scaini, G; Streck, EL, 2008) |
" Considering that creatine kinase (CK) is important for brain energy homeostasis and is inhibited by free radicals, and that oxidative stress is probably involved in the pathogenesis of uremic encephalopathy, we measured CK activity (hippocampus, striatum, cerebellum, cerebral cortex and prefrontal cortex) in brain if rats submitted to renal ischemia and the effect of administration of antioxidants (N-acetylcysteine, NAC and deferoxamine, DFX) on this enzyme." | 3.74 | Inhibition of brain creatine kinase activity after renal ischemia is attenuated by N-acetylcysteine and deferoxamine administration. ( Burigo, M; Constantino, L; Dal-Pizzol, F; Di-Pietro, PB; Dias, ML; Machado, RA; Scaini, G; Streck, EL, 2008) |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Kinugasa, E | 1 |
Di-Pietro, PB | 1 |
Dias, ML | 1 |
Scaini, G | 1 |
Burigo, M | 1 |
Constantino, L | 1 |
Machado, RA | 1 |
Dal-Pizzol, F | 1 |
Streck, EL | 1 |
1 review available for deferoxamine and Acquired Metabolic Diseases, Brain
Article | Year |
---|---|
[Uremic encephalopathy, dialysis encephalopathy].
Topics: Aluminum; Brain Diseases, Metabolic; Deferoxamine; Diagnosis, Differential; Hemofiltration; Humans; | 2004 |
1 other study available for deferoxamine and Acquired Metabolic Diseases, Brain
Article | Year |
---|---|
Inhibition of brain creatine kinase activity after renal ischemia is attenuated by N-acetylcysteine and deferoxamine administration.
Topics: Acetylcysteine; Animals; Antioxidants; Brain; Brain Diseases, Metabolic; Creatine Kinase; Deferoxami | 2008 |