defactinib and Lung-Neoplasms

defactinib has been researched along with Lung-Neoplasms* in 9 studies

Reviews

1 review(s) available for defactinib and Lung-Neoplasms

ArticleYear
Single agent VS-6766 or VS-6766 plus defactinib in
    Future oncology (London, England), 2022, Volume: 18, Issue:16

    The alteration of

    Topics: Benzamides; Carcinoma, Non-Small-Cell Lung; Clinical Trials, Phase II as Topic; Humans; Lung Neoplasms; Mutation; Proto-Oncogene Proteins p21(ras); Pyrazines; Sulfonamides

2022

Trials

2 trial(s) available for defactinib and Lung-Neoplasms

ArticleYear
Phase 2 study of the focal adhesion kinase inhibitor defactinib (VS-6063) in previously treated advanced KRAS mutant non-small cell lung cancer.
    Lung cancer (Amsterdam, Netherlands), 2020, Volume: 139

    KRAS mutations, which occur in approximately 25% of lung adenocarcinoma cases, represent a major unmet clinical need in thoracic oncology. Preclinical studies have demonstrated that KRAS mutant NSCLC cell lines and xenografts with additional alterations in either TP53 or CDKN2A (INK4A/ARF) loci are sensitive to focal adhesion kinase (FAK) inhibition. Defactinib (VS-6063) is a selective oral inhibitor of FAK.. Patients with previously treated advanced KRAS mutant NSCLC were prospectively assigned to one of four molecularly defined cohorts based on the presence or absence of TP53 or CDKN2A alterations and received treatment with defactinib 400 mg orally BID until disease progression or intolerable toxicity. The primary endpoint was progression-free survival (PFS) at 12 weeks.. Fifty-five patients were enrolled. Mean age was 62 years; 51% were female. The median number of prior lines of therapy was 4 (range 1-8). Fifteen (28%) patients met the 12-week PFS endpoint, with one patient achieving a partial response. Median PFS was 45 days. Clinical efficacy did not correlate with TP53 or CDKN2A status. The most common adverse events were fatigue, gastrointestinal, and increased bilirubin, and were generally grade 1 or 2 in severity.. In heavily pretreated patients with KRAS mutant NSCLC, defactinib monotherapy demonstrated modest clinical activity. Efficacy was not associated with TP53 and CDKN2A status. Defactinib was generally well tolerated.

    Topics: Adenocarcinoma of Lung; Benzamides; Carcinoma, Non-Small-Cell Lung; Drug Resistance, Neoplasm; Female; Focal Adhesion Protein-Tyrosine Kinases; Follow-Up Studies; Humans; Lung Neoplasms; Male; Middle Aged; Mutation; Prognosis; Prospective Studies; Proto-Oncogene Proteins p21(ras); Pyrazines; Salvage Therapy; Sulfonamides; Survival Rate

2020
Maintenance Defactinib Versus Placebo After First-Line Chemotherapy in Patients With Merlin-Stratified Pleural Mesothelioma: COMMAND-A Double-Blind, Randomized, Phase II Study.
    Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2019, 04-01, Volume: 37, Issue:10

    Inhibition of focal adhesion kinase has been shown to selectively kill mesothelioma cells that express low levels of moesin-ezrin-radixin-like protein (merlin). On this basis, we designed a randomized, phase II trial to investigate whether defactinib as maintenance therapy after standard first-line chemotherapy could improve progression-free survival (PFS) in patients with malignant pleural mesothelioma (MPM).. This global, double-blind, randomized, placebo-controlled trial was conducted in patients with advanced MPM and disease control after at least four cycles of first-line chemotherapy. Patients were stratified for merlin and then randomly assigned (in a 1:1 fashion) to receive either oral defactinib or placebo until disease progression, unacceptable toxicity, or withdrawal occurred. The coprimary end points were PFS and overall survival (OS). Quality of life (QoL) was assessed using the Lung Cancer Symptom Scale for Mesothelioma tool.. Three hundred forty-four patients were randomly assigned to receive either defactinib (n = 173) or placebo (n = 171). The median PFS was 4.1 months (95% CI, 2.9 to 5.6 months) for defactinib versus 4.0 months (95% CI, 2.9 to 4.2 months) for placebo. The median OS was 12.7 months (95% CI, 9.1 to 21 months) for defactinib versus 13.6 months (95% CI, 9.6 to 21.2 months) for placebo (hazard ratio, 1.0; 95% CI, 0.7 to 1.4). Although shorter survival for both defactinib- and placebo-treated patients was observed, in the patients who had merlin-low MPM compared with the patients who had merlin-high MPM, there were no statistical differences in response rate, PFS, OS, or QoL between the treatment groups. The most common grade 3 or worse adverse events were nausea, diarrhea, fatigue, dyspnea, and decreased appetite.. Neither PFS nor OS was improved by defactinib after first-line chemotherapy in patients with merlin-low MPM. Defactinib cannot be recommended as maintenance therapy for advanced MPM.

    Topics: Adult; Aged; Aged, 80 and over; Benzamides; Diarrhea; Double-Blind Method; Fatigue; Female; Humans; Kaplan-Meier Estimate; Lung Neoplasms; Male; Mesothelioma; Mesothelioma, Malignant; Middle Aged; Nausea; Neurofibromin 2; Pleural Neoplasms; Pyrazines; Sulfonamides; Treatment Outcome

2019

Other Studies

6 other study(ies) available for defactinib and Lung-Neoplasms

ArticleYear
Construction of crizotinib resistant models with CD74-ROS1 D2033N and CD74-ROS1 S1986F point mutations to explore resistance mechanism and treatment strategy.
    Cellular signalling, 2023, Volume: 101

    Targeted therapy is an essential treatment for non-small cell lung cancer (NSCLC) that is always associated with the drug resistance. c-ros oncogene 1 (ROS1) gene point mutation is one of the leading factors causing drug resistance. However, the point mutation cell models of crizotinib are challenging to obtain, causing few reports on the drug resistance mechanism and the treatment strategy. We constructed CD74-ROS1 D2033N and CD74-ROS1 S1986F point mutant plasmids by fusion PCR technology and transfected them into A549 cells. Western blot and MTT assay proved that the drug-resistant cell lines were successfully transfected. The transwell assay confirmed that the mutant cells' motor abilities were significantly increased compared with the wild-type group. In addition, focal adhesion kinase (FAK) was significantly increased in mutant cells. Moreover, crizotinib resistance occurred in the mutant cells through the activation of FAK / phosphatidylinositol 3-kinase (PI3K) / protein kinase B (AKT) pathway. Next, crizotinib was combined with defactinib, a FAK inhibitor, to further explore its therapeutic effect. The results showed that the combination could significantly inhibit the proliferation, invasion and migration of mutant cells. In conclusion, we proved that CD74-ROS1 D2033N and CD74-ROS1 S1986F point mutant NSCLC cells were resistant to crizotinib through the activation of FAK/PI3K/AKT signaling pathway, and inhibiting FAK/PI3K/AKT signaling pathway activation by defactinib could overcome drug resistance in mutant cells.

    Topics: Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Crizotinib; Drug Resistance, Neoplasm; Humans; Lung Neoplasms; Oncogenes; Phosphatidylinositol 3-Kinases; Point Mutation; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Pyrazoles; Pyridines

2023
Abnormally activated OPN/integrin αVβ3/FAK signalling is responsible for EGFR-TKI resistance in EGFR mutant non-small-cell lung cancer.
    Journal of hematology & oncology, 2020, 12-07, Volume: 13, Issue:1

    Acquired epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance limits the long-term clinical efficacy of tyrosine kinase-targeting drugs. Although most of the mechanisms of acquired EGFR-TKI resistance have been revealed, the mechanism of ~ 15% of cases has not yet been elucidated.. Cell viability was analysed using the Cell Counting Kit-8 (CCK-8) assay. Proteome profiler array analysis was performed to find proteins contributing to acquired EGFR-TKI resistance. Secreted OPN was detected by ELISA. Immunohistochemical analysis was conducted to detect expression of integrin αV in NSCLC tissue. The effect of VS-6063 on apoptosis and proliferation of PC9 gefitinib-resistant cells was detected by fluorescence-activated cell sorting (FACS) and clonogenic assays. A mouse xenograft model was used to assess the effect of VS-6063 on the sensitivity of PC9 gefitinib-resistant cells to gefitinib.. OPN was overexpressed in acquired EGFR-TKI-resistant NSCLCs. Secreted OPN contributed to acquired EGFR-TKI resistance by activating the integrin αVβ3/FAK pathway. Inhibition of FAK signalling increased sensitivity to EGFR-TKIs in PC9 gefitinib-resistant cells both in vitro and in vivo.. OPN contributes to acquired EGFR-TKI resistance by up-regulating expression of integrin αVβ3, which activates the downstream FAK/AKT and ERK signalling pathways to promote cell proliferation in NSCLC.

    Topics: Animals; Antineoplastic Agents; Benzamides; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Resistance, Neoplasm; ErbB Receptors; Focal Adhesion Kinase 1; Gefitinib; Humans; Integrin alphaVbeta3; Lung Neoplasms; Male; Mice, Inbred BALB C; Mice, Nude; Osteopontin; Protein Kinase Inhibitors; Pyrazines; Signal Transduction; Sulfonamides

2020
Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma.
    Cancer biology & therapy, 2018, 04-03, Volume: 19, Issue:4

    The non-receptor cytoplasmic tyrosine kinase, Focal Adhesion Kinase (FAK) is known to play a key role in a variety of normal and cancer cellular functions such as survival, proliferation, migration and invasion. It is highly active and overexpressed in various cancers including Pancreatic Ductal Adenocarcinoma (PDAC) and Malignant Pleural Mesothelioma (MPM). Here, initially, we demonstrate that FAK is overexpressed in both PDAC and MPM cell lines. Then we analyze effects of two small molecule inhibitors PF-573228, and PF-431396, which are dual specificity inhibitors of FAK and proline rich tyrosine kinase 2 (PYK2), as well as VS-6063, another small molecule inhibitor that specifically inhibits FAK but not PYK2 for cell growth, motility and invasion of PDAC and MPM cell lines. Treatment with PF-573228, PF-431396 and VS-6063 cells resulted in a dose-dependent inhibition of growth and anchorage-independent colony formation in both cancer cell lines. Furthermore, these compounds suppressed the phosphorylation of FAK at its active site, Y397, and functionally induced significant apoptosis and cell cycle arrest in both cell lines. Using the ECIS (Electric cell-substrate impedance sensing) system, we found that treatment of both PF compounds suppressed adherence and migration of PDAC cells on fibronectin. Interestingly, 3D-tumor organoids derived from autochthonous KC (Kras;PdxCre) mice treated with PF-573228 revealed a significant decrease in tumor organoid size and increase in organoid cell death. Taken together, our results show that FAK is an important target for mesothelioma and pancreatic cancer therapy that merit further translational studies.

    Topics: Animals; Benzamides; Carcinoma, Pancreatic Ductal; Cell Adhesion; Cell Culture Techniques; Cell Line, Tumor; Cell Movement; Focal Adhesion Kinase 1; Focal Adhesion Kinase 2; Humans; Lung Neoplasms; Mesothelioma; Mesothelioma, Malignant; Mice; Mice, Transgenic; Neoplasms, Experimental; Pancreatic Neoplasms; Phosphorylation; Pleural Neoplasms; Proto-Oncogene Proteins p21(ras); Pyrazines; Quinolones; Sulfonamides; Sulfones

2018
Novel antibody reagents for characterization of drug- and tumor microenvironment-induced changes in epithelial-mesenchymal transition and cancer stem cells.
    PloS one, 2018, Volume: 13, Issue:6

    The presence of cancer stem cells (CSCs) and the induction of epithelial-to-mesenchymal transition (EMT) in tumors are associated with tumor aggressiveness, metastasis, drug resistance, and poor prognosis, necessitating the development of reagents for unambiguous detection of CSC- and EMT-associated proteins in tumor specimens. To this end, we generated novel antibodies to EMT- and CSC-associated proteins, including Goosecoid, Sox9, Slug, Snail, and CD133. Importantly, unlike several widely used antibodies to CD133, the anti-CD133 antibodies we generated recognize epitopes distal to known glycosylation sites, enabling analyses that are not confounded by differences in CD133 glycosylation. For all target proteins, we selected antibodies that yielded the expected target protein molecular weights by Western analysis and the correct subcellular localization patterns by immunofluorescence microscopy assay (IFA); binding selectivity was verified by immunoprecipitation-mass spectrometry and by immunohistochemistry and IFA peptide blocking experiments. Finally, we applied these reagents to assess modulation of the respective markers of EMT and CSCs in xenograft tumor models by IFA. We observed that the constitutive presence of human hepatocyte growth factor (hHGF) in the tumor microenvironment of H596 non-small cell lung cancer tumors implanted in homozygous hHGF knock-in transgenic mice induced a more mesenchymal-like tumor state (relative to the epithelial-like state when implanted in control SCID mice), as evidenced by the elevated expression of EMT-associated transcription factors detected by our novel antibodies. Similarly, our new anti-CD133 antibody enabled detection and quantitation of drug-induced reductions in CD133-positive tumor cells following treatment of SUM149PT triple-negative breast cancer xenograft models with the CSC/focal adhesion kinase (FAK) inhibitor VS-6063. Thus, our novel antibodies to CSC- and EMT-associated factors exhibit sufficient sensitivity and selectivity for immunofluorescence microscopy studies of these processes in preclinical xenograft tumor specimens and the potential for application with clinical samples.

    Topics: AC133 Antigen; Animals; Antibodies, Monoclonal; Antineoplastic Agents; Benzamides; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Epithelial-Mesenchymal Transition; Female; Gene Knock-In Techniques; Hepatocyte Growth Factor; Humans; Indicators and Reagents; Lung Neoplasms; Mice, Transgenic; Neoplastic Stem Cells; Phenotype; Pyrazines; Sulfonamides; Triple Negative Breast Neoplasms; Tumor Microenvironment; Xenograft Model Antitumor Assays

2018
Assessment of signaling pathway inhibitors and identification of predictive biomarkers in malignant pleural mesothelioma.
    Lung cancer (Amsterdam, Netherlands), 2018, Volume: 126

    Malignant pleural mesothelioma (MPM) is an aggressive tumor with limited therapeutic options, requiring the development of efficient targeted therapies based on molecular phenotype of the tumor and to identify predictive biomarkers of the response.. The effect of inhibitors was investigated by cell viability assessment on primary MPM cell lines established in our laboratory from patient tumors, well characterized at the molecular level. Effects on apoptosis, cell proliferation and viability on MPM growing in multicellular spheroid were also assessed for verteporfin. Gene and protein expression, and gene knockdown by RNA interference were used to define mechanism of inhibition and specific predictive biomarkers.. Anti-tumor effect of eight major signaling pathways inhibitors involved in mesothelial carcinogenesis was investigated. Three inhibitors were more efficient than cisplatin, the drug used as first-line chemotherapy in patients with MPM: verteporfin, a putative YAP inhibitor, defactinib, a FAK inhibitor and NSC668394, an Ezrin inhibitor. Verteporfin, the most efficient inhibitor, induced cell proliferation arrest and cell death, and is effective on 3D spheroid multicellular model. Verteporfin sensitivity was YAP-independent and related to molecular classification of the tumors. Biomarkers based on gene expression were identified to predict accurately sensitivity to these three inhibitors.. Our study shows that drug screening on well-characterized MPM cells allows for the identification of novel potential therapeutic strategies and defining specific biomarkers predictive of the drug response.

    Topics: Antineoplastic Agents; Apoptosis; Benzamides; Biomarkers, Tumor; Cell Proliferation; Cell Survival; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Mesothelioma; Phenols; Pleural Neoplasms; Pyrazines; Quinolones; RNA Interference; Signal Transduction; Sulfonamides; Tumor Cells, Cultured; Verteporfin

2018
The target landscape of clinical kinase drugs.
    Science (New York, N.Y.), 2017, 12-01, Volume: 358, Issue:6367

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays

2017