defactinib and Leukemia--Myeloid--Acute

defactinib has been researched along with Leukemia--Myeloid--Acute* in 2 studies

Other Studies

2 other study(ies) available for defactinib and Leukemia--Myeloid--Acute

ArticleYear
Protein tyrosine kinase 2b inhibition reverts niche-associated resistance to tyrosine kinase inhibitors in AML.
    Leukemia, 2022, Volume: 36, Issue:10

    FLT3 tyrosine kinase inhibitor (TKI) therapy evolved into a standard therapy in FLT3-mutated AML. TKI resistance, however, develops frequently with poor outcomes. We analyzed acquired TKI resistance in AML cell lines by multilayered proteome analyses. Leupaxin (LPXN), a regulator of cell migration and adhesion, was induced during early resistance development, alongside the tyrosine kinase PTK2B which phosphorylated LPXN. Resistant cells differed in cell adhesion and migration, indicating altered niche interactions. PTK2B and LPXN were highly expressed in leukemic stem cells in FLT3-ITD patients. PTK2B/FAK inhibition abrogated resistance-associated phenotypes, such as enhanced cell migration. Altered pathways in resistant cells, assessed by nascent proteomics, were largely reverted upon PTK2B/FAK inhibition. PTK2B/FAK inhibitors PF-431396 and defactinib synergized with different TKIs or daunorubicin in FLT3-mutated AML. Midostaurin-resistant and AML cells co-cultured with mesenchymal stroma cells responded particularly well to PTK2B/FAK inhibitor addition. Xenograft mouse models showed significant longer time to leukemia symptom-related endpoint upon gilteritinib/defactinib combination treatment in comparison to treatment with either drug alone. Our data suggest that the leupaxin-PTK2B axis plays an important role in acquired TKI resistance in AML. PTK2B/FAK inhibitors act synergistically with currently used therapeutics and may overcome emerging TKI resistance in FLT3-mutated AML at an early timepoint.

    Topics: Animals; Benzamides; Cell Line, Tumor; Daunorubicin; Drug Resistance, Neoplasm; fms-Like Tyrosine Kinase 3; Focal Adhesion Kinase 2; Humans; Leukemia, Myeloid, Acute; Mice; Mutation; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proteome; Pyrazines; Sulfonamides

2022
The target landscape of clinical kinase drugs.
    Science (New York, N.Y.), 2017, 12-01, Volume: 358, Issue:6367

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays

2017