defactinib and Carcinoma--Pancreatic-Ductal

defactinib has been researched along with Carcinoma--Pancreatic-Ductal* in 2 studies

Reviews

1 review(s) available for defactinib and Carcinoma--Pancreatic-Ductal

ArticleYear
Pancreatic cancer stroma: an update on therapeutic targeting strategies.
    Nature reviews. Gastroenterology & hepatology, 2020, Volume: 17, Issue:8

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality in the Western world with limited therapeutic options and dismal long-term survival. The neoplastic epithelium exists within a dense stroma, which is recognized as a critical mediator of disease progression through direct effects on cancer cells and indirect effects on the tumour immune microenvironment. The three dominant entities in the PDAC stroma are extracellular matrix (ECM), vasculature and cancer-associated fibroblasts (CAFs). The ECM can function as a barrier to effective drug delivery to PDAC cancer cells, and a multitude of strategies to target the ECM have been attempted in the past decade. The tumour vasculature is a complex system and, although multiple anti-angiogenesis agents have already failed late-stage clinical trials in PDAC, other vasculature-targeting approaches aimed at vessel normalization and tumour immunosensitization have shown promise in preclinical models. Lastly, PDAC CAFs participate in active cross-talk with cancer cells within the tumour microenvironment. The existence of intratumoural CAF heterogeneity represents a paradigm shift in PDAC CAF biology, with myofibroblastic and inflammatory CAF subtypes that likely make distinct contributions to PDAC progression. In this Review, we discuss our current understanding of the three principal constituents of PDAC stroma, their effect on the prevalent immune landscape and promising therapeutic targets within this compartment.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Cancer-Associated Fibroblasts; Carcinoma, Pancreatic Ductal; Extracellular Fluid; Extracellular Matrix; Focal Adhesion Protein-Tyrosine Kinases; Humans; Hyaluronic Acid; Hyaluronoglucosaminidase; Mice; Molecular Targeted Therapy; Pancreatic Neoplasms; Permeability; Pressure; Protein Kinase Inhibitors; Pyrazines; rho-Associated Kinases; Sulfonamides; Tumor Microenvironment

2020

Other Studies

1 other study(ies) available for defactinib and Carcinoma--Pancreatic-Ductal

ArticleYear
Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma.
    Cancer biology & therapy, 2018, 04-03, Volume: 19, Issue:4

    The non-receptor cytoplasmic tyrosine kinase, Focal Adhesion Kinase (FAK) is known to play a key role in a variety of normal and cancer cellular functions such as survival, proliferation, migration and invasion. It is highly active and overexpressed in various cancers including Pancreatic Ductal Adenocarcinoma (PDAC) and Malignant Pleural Mesothelioma (MPM). Here, initially, we demonstrate that FAK is overexpressed in both PDAC and MPM cell lines. Then we analyze effects of two small molecule inhibitors PF-573228, and PF-431396, which are dual specificity inhibitors of FAK and proline rich tyrosine kinase 2 (PYK2), as well as VS-6063, another small molecule inhibitor that specifically inhibits FAK but not PYK2 for cell growth, motility and invasion of PDAC and MPM cell lines. Treatment with PF-573228, PF-431396 and VS-6063 cells resulted in a dose-dependent inhibition of growth and anchorage-independent colony formation in both cancer cell lines. Furthermore, these compounds suppressed the phosphorylation of FAK at its active site, Y397, and functionally induced significant apoptosis and cell cycle arrest in both cell lines. Using the ECIS (Electric cell-substrate impedance sensing) system, we found that treatment of both PF compounds suppressed adherence and migration of PDAC cells on fibronectin. Interestingly, 3D-tumor organoids derived from autochthonous KC (Kras;PdxCre) mice treated with PF-573228 revealed a significant decrease in tumor organoid size and increase in organoid cell death. Taken together, our results show that FAK is an important target for mesothelioma and pancreatic cancer therapy that merit further translational studies.

    Topics: Animals; Benzamides; Carcinoma, Pancreatic Ductal; Cell Adhesion; Cell Culture Techniques; Cell Line, Tumor; Cell Movement; Focal Adhesion Kinase 1; Focal Adhesion Kinase 2; Humans; Lung Neoplasms; Mesothelioma; Mesothelioma, Malignant; Mice; Mice, Transgenic; Neoplasms, Experimental; Pancreatic Neoplasms; Phosphorylation; Pleural Neoplasms; Proto-Oncogene Proteins p21(ras); Pyrazines; Quinolones; Sulfonamides; Sulfones

2018