davunetide has been researched along with Nerve-Degeneration* in 2 studies
2 other study(ies) available for davunetide and Nerve-Degeneration
Article | Year |
---|---|
NAP protects against cyanide-related microtubule destruction.
The peptide NAP (NAPVSIPQ) was shown to protect neurons against a wide variety of insults. Particularly, NAP was shown to be neuroprotective in vitro against cyanide in hippocampal cultures and against oxygen-glucose deprivation in hippocampal and cortical neuronal cultures. Cyanide causes energy depletion in the cell and destroys the cytoskeleton, and NAP has been shown before to protect the microtubule cytoskeleton. The current study explored the effect of NAP on cyanide-induced microtubule destruction in cerebral cortical cultures. Sodium cyanide (6.8 mM) reduced the number of neurons containing intact microtubules as identified by bIII-tubulin immunostaining. When sodium cyanide was added together with NAP (10(-14)-10(-12) M), complete protection was observed. Although the primary site of action of cyanide is considered to be the mitochondria, the current results involve microtubule destruction by cyanide toxicity that is completely reversed by NAP treatment. Topics: Animals; Cells, Cultured; Cyanides; Microtubules; Mitochondrial Diseases; Nerve Degeneration; Neurons; Neuroprotective Agents; Oligopeptides; Rats; Rats, Sprague-Dawley; tau Proteins | 2009 |
Neuroprotective effect of the peptides ADNF-9 and NAP on hypoxic-ischemic brain injury in neonatal rats.
Perinatal asphyxia is an important cause of neonatal mortality and subsequent serious sequelae such as motor and cognitive deficits and seizures. Recent studies have demonstrated that short peptides derived from activity-dependent neurotrophic factor (ADNF) and activity-dependent neuroprotective protein (ADNP) are neuroprotective at femtomolar concentrations. However, the effect of these peptides on the hypoxic-ischemic brain injury model is unknown. The aim of this study is to investigate the effects of the peptides ADNF-9 and NAP on neurodegeneration and cerebral nitric oxide (NO) production in a neonatal rat model of hypoxic-ischemic brain injury. Seven-day-old Wistar Albino rat pups have been used in the study (n=42). Experimental groups in the study were: sham-operated group, ADNF-9-treated hypoxia-ischemia group, NAP-treated hypoxia-ischemia group, ADNF-9+NAP-treated hypoxia-ischemia group, and vehicle-treated group. In hypoxia-ischemia groups, left common carotid artery was ligated permanently on the seventh postnatal day. Two hours after the procedure, hypoxia (92% nitrogen and 8% oxygen) was applied for 2.5 h. ADNF-9, NAP, and ADNF-9+NAP were injected (intraperitoneally; i.p.) as a single dose immediately after the hypoxia period. Brain nitrite levels, neuronal cell death, and apoptosis were evaluated in both hemispheres (carotid ligated or nonligated) 72 h after the hypoxic-ischemic insult. Histopathological evaluation demonstrated that ADNF-9 and NAP significantly diminished number of "apoptotic cells" in the hippocampal CA1, CA2, CA3, and gyrus dentatus regions in both hemispheres (ligated and nonligated). When compared with vehicle-treated group, combination treatment with ADNF-9+NAP did not significantly reduce "apoptotic cell death" in any of the hemispheres. ADNF-9 and NAP, when administered separately, significantly preserved the number of neurons CA1, CA2, CA3, and dentate gyrus regions of the hippocampus, when compared with vehicle-treated group. The density of the CA1, CA2, and dentate gyrus neurons was significantly higher when combination therapy with ADNF-9+NAP was used in the carotid ligated hemispheres. In the nonligated hemispheres, combination therapy preserved the number of neurons only in the CA1 and dentate gyrus regions. Brain nitrite levels were evaluated by Griess reagent and showed that hypoxic-ischemic injury caused a significant increase in NO production. Brain nitrite levels in ADNF-9+NAP-treated animals were not diffe Topics: Aging; Animals; Animals, Newborn; Apoptosis; Asphyxia Neonatorum; Brain; Brain Infarction; Cerebral Cortex; Disease Models, Animal; Drug Combinations; Hippocampus; Humans; Hypoxia-Ischemia, Brain; Infant, Newborn; Injections, Intraperitoneal; Nerve Degeneration; Nerve Tissue Proteins; Neuroprotective Agents; Nitric Oxide; Nitrites; Oligopeptides; Rats; Rats, Wistar; Treatment Outcome | 2006 |