dasatinib has been researched along with Breast-Neoplasms* in 4 studies
1 review(s) available for dasatinib and Breast-Neoplasms
Article | Year |
---|---|
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators.
The primary source of failure of cancer therapies is multidrug resistance (MDR), which can be caused by different mechanisms, including the overexpression of ABC transporters in cancer cells. Among the 48 human ABC proteins, the breast cancer resistance protein (BCRP/ABCG2) has been described as a pivotal player in cancer resistance. The use of functional inhibitors and expression modulators is a promising strategy to overcome the MDR caused by ABCG2. Despite the lack of clinical trials using ABCG2 inhibitors, many compounds have already been discovered. This review presents an overview about various ABCG2 inhibitors that have been identified, discussing some chemical aspects and the main experimental methods used to identify and characterize the mechanisms of new inhibitors. In addition, some biological requirements to pursue preclinical tests are described. Finally, we discuss the potential use of ABCG2 inhibitors in cancer stem cells (CSC) for improving the objective response rate and the mechanism of ABCG2 modulators at transcriptional and protein expression levels. Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; Breast Neoplasms; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Female; Humans; Neoplasm Proteins; Neoplastic Stem Cells | 2022 |
3 other study(ies) available for dasatinib and Breast-Neoplasms
Article | Year |
---|---|
Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors.
Heterocyclic rings such as thiazole and benzimidazole are considered as privileged structures, since they constitute several FDA-approved drugs for cancer treatment. In this work, a new set of 2-(2-(substituted) hydrazinyl)-4-(1-methyl-1H-benzo[d]imidazol-2-yl) thiazoles 4a-q were designed as epidermal growth factor receptor (EGFR) inhibitors and synthesized using concise synthetic methods. The new target compounds have been evaluated in vitro for their suppression activity against EGFR TK. Compounds 4n, 4h, 4i, 4a and 4d exhibited significant potency in comparison with erlotinib which served as a reference drug (IC50, 71.67-152.59 nM; IC50 erlotinib, 152.59 nM). Furthermore, MTT assay revealed that compounds 4j, 4a, 4f, 4h, 4n produced the most promising cytotoxic potency against the human breast cancer cell line (MCF-7) (IC50; 5.96-11.91 µM; IC50 erlotinib; 4.15 µM). Compound 4a showed promising activity as EGFR TK inhibitor as well as anti-breast cancer agent. In addition, 4a induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells. Moreover, 4a upregulated the oncogenic parameters; caspase-3, p53, Bax/Bcl-2 as well as it inhibited the level of PARP-1 enzyme. QSAR study was carried out for the new derivatives and it revealed the goodness of the models. Furthermore, molecular docking studies represented the binding modes of the promising compounds in the active pocket of EGFR. Topics: Antineoplastic Agents; Apoptosis; Benzimidazoles; Breast Neoplasms; Cell Proliferation; Drug Screening Assays, Antitumor; ErbB Receptors; Erlotinib Hydrochloride; Female; Humans; MCF-7 Cells; Molecular Docking Simulation; Protein Kinase Inhibitors; Quantitative Structure-Activity Relationship; Thiazoles | 2020 |
Rapid Discovery and Structure-Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase.
Novel pyrazolopyrimidines displaying high potency and selectivity toward SRC family kinases have been developed by combining ligand-based design and phenotypic screening in an iterative manner. Compounds were derived from the promiscuous kinase inhibitor PP1 to search for analogs that could potentially target a broad spectrum of kinases involved in cancer. Phenotypic screening against MCF7 mammary adenocarcinoma cells generated target-agnostic structure-activity relationships that biased subsequent designs toward breast cancer treatment rather than to a particular target. This strategy led to the discovery of two potent antiproliferative leads with phenotypically distinct anticancer mode of actions. Kinase profiling and further optimization resulted in eCF506, the first small molecule with subnanomolar IC50 for SRC that requires 3 orders of magnitude greater concentration to inhibit ABL. eCF506 exhibits excellent water solubility, an optimal DMPK profile and oral bioavailability, halts SRC-associated neuromast migration in zebrafish embryos without inducing life-threatening heart defects, and inhibits SRC phosphorylation in tumor xenografts in mice. Topics: Animals; Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; Female; HCT116 Cells; Humans; Lateral Line System; MCF-7 Cells; Mice; Molecular Structure; Neoplasms, Experimental; Protein Kinase Inhibitors; Pyrazoles; Pyrimidines; Rats; src-Family Kinases; Structure-Activity Relationship; Zebrafish | 2016 |
Discovery of novel imidazo[1,2-a]pyrazin-8-amines as Brk/PTK6 inhibitors.
A series of substituted imidazo[1,2-a]pyrazin-8-amines were discovered as novel breast tumor kinase (Brk)/protein tyrosine kinase 6 (PTK6) inhibitors. Tool compounds with low-nanomolar Brk inhibition activity, high selectivity towards other kinases and desirable DMPK properties were achieved to enable the exploration of Brk as an oncology target. Topics: Adaptor Proteins, Signal Transducing; Animals; Aurora Kinases; Breast Neoplasms; Computer Simulation; Dasatinib; DNA-Binding Proteins; Dose-Response Relationship, Drug; Drug Design; Drug Discovery; Drug Screening Assays, Antitumor; Female; Humans; Imidazoles; Inhibitory Concentration 50; Melanocytes; Mice; Molecular Targeted Therapy; Neoplasm Proteins; Oncogenes; Phenotype; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Protein-Tyrosine Kinases; Proto-Oncogenes; Pyrazines; Pyrimidines; RNA-Binding Proteins; Structure-Activity Relationship; Thiazoles | 2011 |