dactolisib has been researched along with Brain-Neoplasms* in 8 studies
8 other study(ies) available for dactolisib and Brain-Neoplasms
Article | Year |
---|---|
PI3K Pathway Inhibition with NVP-BEZ235 Hinders Glycolytic Metabolism in Glioblastoma Multiforme Cells.
Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular targeted therapies. The PI3K/AKT/mTOR pathway is activated in 90% of all Glioblastoma multiforme (GBM) tumors. To gain insight into the impact of the PI3K pathway on GBM metabolism, we treated U87MG GBM cells with NVP-BEZ235 (PI3K and mTOR a dual inhibitor) and identified differentially expressed genes with RNA-seq analysis. RNA-seq identified 7803 differentially regulated genes in response to NVP-BEZ235. Gene Set Enrichment Analysis (GSEA) identified two glycolysis-related gene sets that were significantly enriched ( Topics: Brain Neoplasms; Cell Line, Tumor; Forkhead Box Protein O1; Gene Expression Regulation, Neoplastic; Gene Ontology; Glioblastoma; Glucose; Glutamic Acid; Glycolysis; Humans; Imidazoles; Kaplan-Meier Estimate; Lactic Acid; NAD; Phosphatidylinositol 3-Kinases; Prognosis; Protein Kinase Inhibitors; Quinolines; Signal Transduction | 2021 |
FoxO proteins or loss of functional p53 maintain stemness of glioblastoma stem cells and survival after ionizing radiation plus PI3K/mTOR inhibition.
Dual PI3K/mTOR inhibitors do not effectively radiosensitize glioblastoma multiforme stem cells (GBM-SCs), but p53-proficient GBM-SCs are more responsive than p53-deficient ones. Here, we found that p53-proficient, but not p53-deficient, GBM-SCs lost stemness and differentiated after γ-irradiation combined with PI3K/mTOR inhibition; expression of FoxO proteins was also lost. FoxO overexpression inhibited the loss of stem cell markers under these conditions. Combined, but not single, FoxO1/3 deletion or pharmacological inhibition of FoxO transcriptional activity strongly reduced stem and progenitor marker expression, particularly that of Sox2. Binding of FoxO1 and FoxO3 to the sox2 regulatory regions was also found. However, combined FoxO1/3 knockdown strongly reduced self-renewal and post-treatment survival only in p53-proficient GBM-SCs. This suggests that FoxO1 and FoxO3 are crucial for functional stemness and post-treatment survival mainly in p53-proficient but not in p53-deficient GBM-SCs, and that these functions can be maintained through the loss of DNA damage-responsive p53 instead. Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Forkhead Box Protein O1; Forkhead Box Protein O3; Glioblastoma; Humans; Imidazoles; Neoplastic Stem Cells; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Quinolines; Radiation, Ionizing; RNA Interference; TOR Serine-Threonine Kinases; Tumor Suppressor Protein p53 | 2016 |
Dactolisib (NVP-BEZ235) toxicity in murine brain tumour models.
Glioblastomas (GBMs) are highly malignant brain tumours with a poor prognosis, and current cytotoxic regimens provide only a limited survival benefit. The PI3K/Akt/mTOR pathway has been an attractive target for therapy due to its high activation in GBMs as well as other cancers. The dual pan-PI3K/mTOR kinase inhibitor dactolisib (NVP-BEZ235) is an anti-neoplastic compound currently under investigation. However, little is known about its efficacy in human GBMs. We aimed at evaluating the efficacy of dactolisib in human glioblastoma cells, as well as in murine models carrying human GBM xenografts.. To assess the effect of dactolisib in vitro, MTS assay, manual cell count, BrdU incorporation and Annexin V staining experiments were used to observe growth and apoptosis. Furthermore, Akt phosphorylation (S473), a downstream target of PI3K, was explored by western blotting. Animal studies utilizing orthotopic xenograft models of glioblastoma were performed in nude rats and NOD/SCID mice to monitor survival benefit or inhibition of tumor growth.. We found that dactolisib in vitro shows excellent dose dependent anti-growth properties and increase in apoptosis. Moreover, dose dependent inhibition of Akt phosphorylation (S473), a downstream effect of PI3K, was observed by western blotting. However, in two independent animal studies utilizing nude rats and NOD/SCID mice in orthotopic xenograft models of glioblastoma, we observed no survival benefit or inhibition of tumour growth. Severe side effects were observed, such as elevated levels of blood glucose and the liver enzyme alanine transaminase (ALT), in addition to diarrhoea, hair loss (alopecia), skin rash and accumulation of saliva in the oral cavity.. Taken together, our results suggest that despite the anti-neoplastic efficacy of dactolisib in glioma treatment in vitro, its utility in vivo is questionable due to toxicity. Topics: Animals; Antineoplastic Agents; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Glioblastoma; Humans; Imidazoles; Mice; Phosphorylation; Proto-Oncogene Proteins c-akt; Quinolines; Rats; Signal Transduction; Survival Analysis; Treatment Outcome; Xenograft Model Antitumor Assays | 2016 |
Development of Resistance to EGFR-Targeted Therapy in Malignant Glioma Can Occur through EGFR-Dependent and -Independent Mechanisms.
Epidermal growth factor receptor (EGFR) is highly amplified, mutated, and overexpressed in human malignant gliomas. Despite its prevalence and growth-promoting functions, therapeutic strategies to inhibit EGFR kinase activity have not been translated into profound beneficial effects in glioma clinical trials. To determine the roles of oncogenic EGFR signaling in gliomagenesis and tumor maintenance, we generated a novel glioma mouse model driven by inducible expression of a mutant EGFR (EGFR*). Using combined genetic and pharmacologic interventions, we revealed that EGFR*-driven gliomas were insensitive to EGFR tyrosine kinase inhibitors, although they could efficiently inhibit EGFR* autophosphorylation in vitro and in vivo. This is in contrast with the genetic suppression of EGFR* induction that led to significant tumor regression and prolonged animal survival. However, despite their initial response to genetic EGFR* extinction, all tumors would relapse and propagate independent of EGFR*. We further showed that EGFR*-independent tumor cells existed prior to treatment and were responsible for relapse following genetic EGFR* suppression. And, the addition of a PI3K/mTOR inhibitor could significantly delay relapse and prolong animal survival. Our findings shed mechanistic insight into EGFR drug resistance in glioma and provide a platform to test therapies targeting aberrant EGFR signaling in this setting. Topics: Animals; Brain Neoplasms; Crizotinib; Cyclin-Dependent Kinase Inhibitor p16; Doxycycline; Drug Resistance, Neoplasm; ErbB Receptors; Erlotinib Hydrochloride; Gefitinib; Glioma; Humans; Imidazoles; Mice, Inbred C57BL; Mice, Transgenic; Molecular Targeted Therapy; Phosphorylation; Protein Processing, Post-Translational; PTEN Phosphohydrolase; Pyrazoles; Pyridines; Quinazolines; Quinolines; Tumor Cells, Cultured | 2015 |
NVP-BEZ235, a novel dual PI3K-mTOR inhibitor displays anti-glioma activity and reduces chemoresistance to temozolomide in human glioma cells.
Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas. However, a considerable number of GBM cases are refractory to TMZ, the need for more effective therapeutic options is overwhelming. Mounting evidence shows that endogenous AKT (protein kinase B) activity can be activated in response to clinically relevant concentrations of TMZ. AKT activation correlated with the increased tumorigenicity, invasiveness and stemness and overexpression of an active form of AKT increases glioma cell resistance to TMZ. Previous studies also show that TMZ contributes to glioma cell apoptosis by inhibiting mTOR signaling. Thus, we hypothesized that the dual PI3K-mTOR inhibitor NVP-BEZ235 may act as antitumor agent against gliomas and potentiate the cytotoxicity of TMZ. In the present study, we found that NVP-BEZ235 treatment of glioma cell lines led to G1 cell cycle arrest, and induced apoptosis. Combination treatment with both TMZ and NVP-BEZ235 resulted in synergistically inhibited glioma cell growth and induced apoptosis (combination index CI<1) in a subset of glioma cell lines, as shown in the increased levels of Bax, and active Caspase-3, and decreased level of Bcl-2. Furthermore, NVP-BEZ235 treatment reversed p-AKT levels enhanced by TMZ. Inhibition of mTOR (p70S6K) signaling with the combination of TMZ and NVP-BEZ235 can be augmented beyond that achieved using each agent individually. In vivo xenograft models in mice, the combinatorial treatment with TMZ and NVP-BEZ235 significantly reduced tumor growth rates and prolonged median survival of tumor-bearing mice. These findings exhibit that TMZ in combination with NVP-BEZ235 act synergistically to inhibit proliferation of glioma cells by down-regulating of the PI3K-AKT-mTOR pathway, suggesting TMZ and NVP-BEZ235 combination therapy may be an option for GBM treatment. Topics: Animals; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; bcl-2-Associated X Protein; Brain Neoplasms; Caspase 3; Cell Line, Tumor; Cell Proliferation; Dacarbazine; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Drug Synergism; G1 Phase Cell Cycle Checkpoints; Glioma; Humans; Imidazoles; Inhibitory Concentration 50; Male; Mice, SCID; Phosphatidylinositol 3-Kinase; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quinolines; Signal Transduction; Temozolomide; TOR Serine-Threonine Kinases; Tumor Burden; Xenograft Model Antitumor Assays | 2015 |
NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro.
NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor and shows dramatic effects on gliomas. The aim of this study was to investigate the effects of NVP-BEZ235 on the radiosensitivity and autophagy of glioma stem cells (GSCs) in vitro.. Human GSCs (SU-2) were tested. The cell viability and survival from ionizing radiation (IR) were evaluated using MTT and clonogenic survival assay, respectively. Immunofluorescence assays were used to identify the formation of autophagosomes. The apoptotic cells were quantified with annexin V-FITC/PI staining and flow cytometry, and observed using Hoechst 33258 staining and fluorescence microscope. Western blot analysis was used to analyze the expression levels of proteins. Cell cycle status was determined by measuring DNA content after staining with PI. DNA repair in the cells was assessed using a comet assay.. Treatment of SU-2 cells with NVP-BEZ235 (10-320 nmol/L) alone suppressed the cell growth in a concentration-dependent manner. A low concentration of NVP-BEZ235 (10 nmol/L) significantly increased the radiation sensitivity of SU-2 cells, which could be blocked by co-treatment with 3-MA (50 μmol/L). In NVP-BEZ235-treated SU-2 cells, more punctate patterns of microtubule-associated protein LC3 immunoreactivity was observed, and the level of membrane-bound LC3-II was significantly increased. A combination of IR with NVP-BEZ235 significantly increased the apoptosis of SU-2 cells, as shown in the increased levels of BID, Bax, and active caspase-3, and decreased level of Bcl-2. Furthermore, the combination of IR with NVP-BEZ235 led to G1 cell cycle arrest. Moreover, NVP-BEZ235 significantly attenuated the repair of IR-induced DNA damage as reflected by the tail length of the comet.. NVP-BEZ235 increases the radiosensitivity of GSCs in vitro by activating autophagy that is associated with synergistic increase of apoptosis and cell-cycle arrest and decrease of DNA repair capacity. Topics: Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; DNA Damage; G1 Phase Cell Cycle Checkpoints; Glioma; Humans; Imidazoles; Neoplastic Stem Cells; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Quinolines; Radiation Tolerance; Radiation-Sensitizing Agents; TOR Serine-Threonine Kinases | 2013 |
Paracrine signaling through MYCN enhances tumor-vascular interactions in neuroblastoma.
Neuroblastoma, a tumor of peripheral neural crest origin, numbers among the most common childhood cancers. Both amplification of the proto-oncogene MYCN and increased neoangiogenesis mark high-risk disease. Because angiogenesis is regulated by phosphatidylinositol 3-kinase (PI3K), we tested a clinical PI3K inhibitor, NVP-BEZ235, in MYCN-dependent neuroblastoma. NVP-BEZ235 decreased angiogenesis and improved survival in both primary human (highly pretreated recurrent MYCN-amplified orthotopic xenograft) and transgenic mouse models for MYCN-driven neuroblastoma. Using both gain- and loss-of-function approaches, we demonstrated that the antiangiogenic efficacy of NVP-BEZ235 depended critically on MYCN in vitro and in vivo. Thus, clinical PI3K/mammalian target of rapamycin inhibitors drove degradation of MYCN in tumor cells, with secondary paracrine blockade of angiogenesis. Our data demonstrated significantly improved survival in treated animals and suggest that NVP-BEZ235 should be tested in children with high-risk, MYCN-amplified neuroblastoma. Topics: Angiogenesis Inhibitors; Animals; Brain Neoplasms; Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Human Umbilical Vein Endothelial Cells; Humans; Imidazoles; Mice; Mice, Transgenic; N-Myc Proto-Oncogene Protein; Neoplasm Transplantation; Neovascularization, Pathologic; Neuroblastoma; Nuclear Proteins; Oncogene Proteins; Paracrine Communication; Phosphatidylinositol 3-Kinases; Proto-Oncogene Mas; Proto-Oncogene Proteins; Quinolines; Signal Transduction | 2012 |
Activated MEK cooperates with Ink4a/Arf loss or Akt activation to induce gliomas in vivo.
The RAS/RAF mitogen-activated protein kinase pathway (MAPK) is highly active in many tumor types including the majority of high-grade gliomas and expression of activated RAS or RAF in neural progenitor cells combined with either AKT activation or Ink4a/Arf loss leads to the development of high-grade gliomas in vivo. This strongly suggests that this pathway is necessary for glioma formation and maintenance. To further define the role of this pathway in the development of high-grade gliomas, we used the established RCAS/TVA glioma mouse model to test the ability of activated MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK), a RAF effector, to induce tumors in vivo in the context of activated AKT or Ink4a/Arf loss. Although expression of activated MEK alone in neural progenitor cells is not sufficient for tumorigenesis, the combination of activated MEK and AKT or MEK with Ink4a/Arf loss is transforming. The data reveal that activation of the classical RAS/MAPK pathway, which is mediated through MEK, leads to the development of high-grade gliomas in vivo and suggest that MEK may be a relevant target for glioma therapy. To test this, we treated both mouse and human glioma cells with the MEK inhibitor PD0325901. Although this treatment induced apoptosis in a significant percentage of the cells, the effect was enhanced by combined treatment with the phosphatidylinositol 3-kinase (PI3K)/mTOR inhibitor NVP-BEZ235. Our results demonstrate that combined inhibition of MEK and PI3K/mTOR is a rational strategy for the treatment of high-grade gliomas and may be an effective adjuvant therapy for this disease. Topics: Animals; Apoptosis; Benzamides; Brain Neoplasms; Cyclin-Dependent Kinase Inhibitor p16; Diphenylamine; Extracellular Signal-Regulated MAP Kinases; Genes, ras; Glioma; Humans; Imidazoles; MAP Kinase Signaling System; Mice; Mice, Transgenic; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Neoplasms; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quinolines | 2011 |