cytochrome-c-t has been researched along with Uveal-Neoplasms* in 4 studies
4 other study(ies) available for cytochrome-c-t and Uveal-Neoplasms
Article | Year |
---|---|
Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.
Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. Topics: Apoptosis; Cell Line, Tumor; Cell Survival; Cytochromes c; Flavonoids; Flavonols; Humans; Melanoma; Membrane Potential, Mitochondrial; Mitochondria; Proto-Oncogene Proteins c-bcl-2; Uveal Neoplasms | 2018 |
Butein induces apoptosis in human uveal melanoma cells through mitochondrial apoptosis pathway.
To study the cytotoxic effects and related signaling pathways of butein on human uveal melanoma cells in vitro.. Three human uveal melanoma cell lines (M17, SP6.5, and C918), retinal pigment epithelial (RPE) cells and scleral fibroblasts were treated with butein at different dosages. The effects of butein on cell viability were assessed by using the MTT assay. Cell apoptosis was determined using annexin V-FITC/ethidium homodimer III flow cytometry. Mitochondrial transmembrane potential changes were assessed by using the JC-1 fluorescent reader, cytosol cytochrome c levels, and the activities of caspase-3, -8, and -9 were measured by using an enzyme-linked immunosorbent assay or colorimetric assay.. Butein reduced the cell viability of cultured human uveal melanoma cells in a dose-dependent manner (10, 30, and 100 μM), with IC50 at 13.3 μM and 15.8 μM in SP6.5 and M17 cell lines, respectively. Similar effects were also found in a highly aggressive and metastatic C918 cell line (IC50 16.7 μM). Butein at lower concentrations (10-30 μM) selectively reduced the cell viability of uveal melanoma cells, without affecting cell viability of RPE cells and fibroblasts. Butein-induced apoptosis of melanoma cells, increased mitochondrial permeability and the level of cytosol cytochrome c, caspase-9 and -3 activities (but not caspase-8) in a dose-dependent manner.. Butein has selectively potent pro-apoptotic effects on cultured human uveal melanoma cells via the intrinsic mitochondrial pathway. Topics: Annexin A5; Apoptosis; Caspases; Cell Survival; Chalcones; Cytochromes c; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Flow Cytometry; Fluorescent Antibody Technique, Indirect; Humans; Melanoma; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Proteins; Retinal Pigment Epithelium; Tumor Cells, Cultured; Uveal Neoplasms | 2012 |
Curcumin induces cell death in human uveal melanoma cells through mitochondrial pathway.
To study the cytotoxic effects and related signaling pathways of curcumin on human uveal melanoma cells in vitro.. Two human uveal melanoma cell lines (M21 and SP6.5), scleral fibroblasts, and choroidal melanocytes were treated with curcumin. The effects of curcumin on cell viability were assessed by using the MTT (3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide) assay. Cytosol cytochrome c levels and the activities of caspase-9 and caspase-3 were measured by using an enzyme-linked immunosorbent assay.. Curcumin induced cell death of cultured human uveal melanoma cells in a dose-dependent manner (10, 30, and 100 microM) and time-dependent manner (3-48 hr), with IC50 at 19.05 microM and 22.39 microM in M21 and SP6.5 cell lines, respectively. Curcumin at lower concentrations (10-30 microM) selectively reduced the cell viability of uveal melanoma cells, without affecting cell viability of fibroblasts and choroidal melanocytes. Curcumin significantly increased the level of cytosol cytochrome c (2-fold greater than the controls after 2 hr treatment), caspase-9 and caspase-3 activities (approximately 4.5- and 6-fold greater than the controls after 2-6 hr treatment, respectively) in a dose-dependent manner.. Curcumin has selectively potent cytotoxic effects on cultured human uveal melanoma cells. This effect is associated with the release of cytochrome c from the mitochondria and the activation of caspase-9 and caspase-3 in uveal melanoma cells after treatment with curcumin. Topics: Antineoplastic Agents; Caspase 3; Caspase 9; Cell Death; Cell Survival; Curcumin; Cytochromes c; Cytosol; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Fibroblasts; Formazans; Humans; Melanocytes; Melanoma; Tetrazolium Salts; Time Factors; Tumor Cells, Cultured; Uveal Neoplasms | 2010 |
Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction.
To test the efficacy of resveratrol, a nontoxic plant product, in the treatment of uveal melanoma.. The effect of oral administration and peritumor injection of resveratrol was tested on tumor growth in two animal models of uveal melanoma. The mechanism of resveratrol action on uveal melanoma cells was studied in vitro in a cell-viability assay: with JC-1 dye, to measure mitochondrial membrane potential; by Western blot analysis, to analyze the cellular redistribution of cytochrome c and Smac/diablo; and in a fluorescence assay with specific substrates, to measure activation of different caspases.. Resveratrol treatment inhibited tumor growth in animal models of uveal melanoma. Since oral administration resulted in relatively low bioavailability of resveratrol, the effect of increased local levels was tested by peritumor injection of the drug. This method resulted in tumor cell death and tumor regression. In vitro experiments with multiple uveal melanoma cell lines demonstrate that resveratrol causes a decrease in cell viability, resulting at least in part from an increase in apoptosis through a mitochondrial pathway. An early event in drug action is the direct targeting of mitochondria by resveratrol, which leads to a decrease in mitochondrial membrane potential and the eventual activation of caspase-3.. These data suggest that resveratrol can inhibit tumor growth and can induce apoptosis via the intrinsic mitochondrial pathway and that by further increasing bioavailability of resveratrol the potency of the drug can be increased, leading to tumor regression. The nontoxic nature of the drug at levels needed for therapy make resveratrol an attractive candidate for the treatment of uveal melanoma. Topics: Administration, Oral; Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Apoptosis Regulatory Proteins; Biological Availability; Blotting, Western; Caspase 3; Caspase 9; Cell Line, Tumor; Cell Survival; Cytochromes c; Disease Models, Animal; Dose-Response Relationship, Drug; Intracellular Signaling Peptides and Proteins; Melanoma; Membrane Potential, Mitochondrial; Mice; Mice, Nude; Mitochondria; Mitochondrial Proteins; Resveratrol; Stilbenes; Transplantation, Heterologous; Uveal Neoplasms | 2008 |