cytochrome-c-t has been researched along with Thyroid-Neoplasms* in 7 studies
7 other study(ies) available for cytochrome-c-t and Thyroid-Neoplasms
Article | Year |
---|---|
Alantolactone induces concurrent apoptosis and GSDME-dependent pyroptosis of anaplastic thyroid cancer through ROS mitochondria-dependent caspase pathway.
Anaplastic thyroid cancer (ATC) is one of the fatal cancers and has not effective treatments. Alantolactone (ATL), a terpenoid extracted from traditional Chinese medicinal herb Inula helenium L., confers significant anti-inflammatory, antibacterial and antitumor activity. However, the activity and mechanisms of ATL in ATC remain unclear.. To investigate the potential anti-ATC effects in vitro and in vivo and the mechanisms involved.. The anti-proliferative activity of Alantolactone (ATL) against ATC cells was analyzed through CCK-8 and colony formation assays. Flow cytometry assay was performed to assess the cell cycle, cell apoptosis, ROS, and mitochondrial membrane potential (ΔΨm), whereas the cellular localization of cytochrome c and calreticulin were determined using cellular immunofluorescence assays. The lactate dehydrogenase (LDH) enzyme activity in the cell culture medium was measured using a commercial LDH kit, whereas ELISA was conducted to assess the secretory function of IL-1β. Western blot assays were conducted to determine the expression or regulation of proteins associated with apoptosis and pyroptosis. Subcutaneous tumor model of nude mice was established to evaluate the anticancer activity of ATL in vivo. The expression of Ki67, cyclin B1, cleaved-PARP, cleaved-caspase 3, and IL-1β in the animal tumor tissues was profiled using immunohistochemistry analyses.. Our data showed that ATL significantly inhibited the proliferation and colony formation activity of ATC cells. ATL induced ATC cell cycle arrest at G2/M phase, and downregulated the expression of cyclin B1 and CDC2. Furthermore, ATL induced concurrent apoptosis and pyroptosis in the ATC cells, and the cleavage of PARP and GSDME. It also significantly increased the release of LDH and IL-1β. Mechanically, ATL-mediated increase in ROS suppressed the Bcl-2/Bax ratio, downregulated the mitochondrial membrane potential and increased the release of cytochrome c, leading to caspase 9 and caspase 3 cleavage. We also found that ATL induced the translocation of an immunogenic cell death marker (calreticulin) to the cell membrane. In addition, it inhibited the growth of the ATC subcutaneous xenograft model, and activated proteins associated with apoptosis and pyroptosis, with a high safety profile.. Taken together, these results firstly demonstrated that ATL exerted an anti-ATC activity by inducing concurrent apoptosis and GSDME-dependent pyroptosis through ROS-mediated mitochondria-dependent caspase activation. Meanwhile, these cell deaths exhibited obvious characteristics of immunogenic cell death, which may synergistically increase the potential of cancer immunotherapy in ATC. Further studies are needed to explore deeper mechanisms for the anti- ATC activity of ATL. Topics: Animals; Apoptosis; Calreticulin; Caspase 3; Caspases; Cell Line, Tumor; Cyclin B1; Cytochromes c; Humans; Mice; Mice, Nude; Mitochondria; Poly(ADP-ribose) Polymerase Inhibitors; Pyroptosis; Reactive Oxygen Species; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms | 2023 |
Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway.
Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 cells in a dose-dependent manner. Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations, as determined by flow cytometry. Lidocaine and bupivacaine caused disruption of mitochondrial membrane potential and release of cytochrome c, accompanied by activation of caspase 3 and 7, PARP cleavage, and induction of a higher ratio of Bax/Bcl-2. Based on microarray and pathway analysis, apoptosis is the prominent transcriptional change common to lidocaine and bupivacaine treatment. Furthermore, lidocaine and bupivacaine attenuated extracellular signal-regulated kinase 1/2 (ERK1/2) activity and induced activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase. Pharmacological inhibitors of MAPK/ERK kinase and p38 MAPK suppressed caspase 3 activation and PARP cleavage. Taken together, our results for the first time demonstrate the cytotoxic effects of local anesthetics on thyroid cancer cells and implicate the MAPK pathways as an important mechanism. Our findings have potential clinical relevance in that the use of local anesthetics may confer previously unrecognized benefits in the management of patients with thyroid cancer. Topics: Anesthetics, Local; Antineoplastic Agents; Apoptosis; Bupivacaine; Caspase 3; Caspase 7; Cell Proliferation; Cytochromes c; Drug Screening Assays, Antitumor; Enzyme Activation; Gene Expression; Humans; Lidocaine; MAP Kinase Signaling System; Membrane Potential, Mitochondrial; Mitochondria; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Thyroid Neoplasms | 2014 |
Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways.
Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; bcl-Associated Death Protein; Biflavonoids; Carcinoma, Neuroendocrine; Caspase 8; Catechin; Cell Line, Tumor; Cytochromes c; DNA, Complementary; Gene Expression Regulation, Neoplastic; Humans; Membrane Microdomains; Membrane Potential, Mitochondrial; Mitochondria; Oncogene Protein p21(ras); p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-ret; Signal Transduction; Thyroid Neoplasms; Transfection | 2013 |
The contributions of oestrogen receptor isoforms to the development of papillary and anaplastic thyroid carcinomas.
Oestrogen (E2) is known to promote the proliferation of thyroid papillary carcinoma cells (KAT5). However, the molecular mechanism responsible is not well understood. In the study reported herein, the localization of ER alpha (ERalpha) and beta (ERbeta) in KAT5 and anaplastic carcinoma cells (FRO) was studied by immunofluorescence staining and by immunoblotting the proteins in subcellular fractions. Cell proliferation and apoptosis were also determined together with the expression of relevant proteins. The pattern of the subcellular localization of ERalpha and ERbeta differed between papillary and anaplastic cancer. Upon E2 treatment, the level of ERalpha increased in the nuclei of papillary cancer cells but ERbeta remained unchanged. The level of mitochondrial ERbeta surpassed that of ERalpha in anaplastic cancer cells. The different locations of ERalpha and ERbeta in KAT5 and FRO agreed with the finding that E2 promoted the proliferation of KAT5 but inhibited or did not affect that of FRO cells, and with the proposed functions of these two receptors. E2 inhibited the level of Bax in the mitochondria of papillary cancer, followed by a decrease of cytochrome c and/or apoptosis-inducing factor (AIF) release from the mitochondria into the cytosol. However, in anaplastic cancer, E2 promoted the expression of Bax in the mitochondria and the release of cytochrome c and/or AIF from mitochondria into the cytosol. Our results may explain the differences in epidemiology and responses to anti-tumour therapy between papillary and anaplastic cancer in terms of the subcellular localization of ER isoforms. In conclusion, the findings provide evidence to support the observation that E2 is an important factor in the development of thyroid cancer. The subcellular localization of ERalpha and ERbeta may account for the different pathogenesis of thyroid papillary and anaplastic cancers. Topics: Apoptosis Inducing Factor; bcl-2-Associated X Protein; Carcinoma; Carcinoma, Papillary; Cell Death; Cell Proliferation; Cytochromes c; Estradiol; Estrogen Antagonists; Estrogen Receptor alpha; Estrogen Receptor beta; Estrogens; Fulvestrant; Humans; Neoplasm Proteins; Receptors, Estrogen; Subcellular Fractions; Thyroid Neoplasms; Tumor Cells, Cultured | 2008 |
Mechanisms for the magnolol-induced cell death of CGTH W-2 thyroid carcinoma cells.
Magnolol, a substance purified from the bark of Magnolia officialis, inhibits cell proliferation and induces apoptosis in a variety of cancer cells. The aim of this study was to study the effects of magnolol on CGTH W-2 thyroid carcinoma cells. After 24 h treatment with 80 microM magnolol in serum-containing medium, about 50% of the cells exhibited apoptotic features and 20% necrotic features. Cytochrome-c staining was diffused in the cytoplasm of the apoptotic cells, but restricted to the mitochondria in control cells. Western blot analyses showed an increase in levels of activated caspases (caspase-3 and -7) and of cleaved poly (ADP-ribose) polymerase (PARP) by magnolol. Concomitantly, immunostaining for apoptosis inducing factor (AIF) showed a time-dependent translocation from the mitochondria to the nucleus. Inhibition of either PARP or caspase activity blocked magnolol-induced apoptosis, supporting the involvement of the caspases and PARP. In addition, magnolol activated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and inactivated Akt by decreasing levels of phosphorylated PTEN and phosphorylated Akt. These data suggest that magnolol promoted apoptosis probably by alleviating the inhibitory effect of Akt on caspase 9. Furthermore, inhibition of PARP activity, but not of caspase activity, completely prevented magnolol-induced necrosis, suggesting the notion that it might be caused by depletion of intracellular ATP levels due to PARP activation. These results show that magnolol initiates apoptosis via the cytochrome-c/caspase 3/PARP/AIF and PTEN/Akt/caspase 9/PARP pathways and necrosis via PARP activation. Topics: Apoptosis; Apoptosis Inducing Factor; Biphenyl Compounds; Blotting, Western; Caspase 3; Caspase 7; Cell Line, Tumor; Cytochromes c; Flow Cytometry; Humans; Immunohistochemistry; Lignans; Necrosis; Poly(ADP-ribose) Polymerases; Signal Transduction; Thyroid Neoplasms | 2007 |
Redox control of manumycin A-induced apoptosis in anaplastic thyroid cancer cells: involvement of the xenobiotic apoptotic pathway.
Our previous studies demonstrated that manumycin A, a farnesyltransferase inhibitor, induced apoptosis of anaplastic thyroid cancer cells via the intrinsic apoptosis pathway and induced reactive oxygen species (ROS), which mediated DNA damage. In this study, we investigated the hypothesis that the mechanism of apoptosis induced by manumycin in anaplastic thyroid cancer cells fits the general pattern of the "xenobiotic apoptosis pathway," the hallmarks of which are induction of oxidative stress, mitogen-activated protein kinase (MAPK) signaling, and cytochrome c release, which activates the intrinsic apoptosis pathway. We found that manumycin reduced intracellular glutathione and generated ROS: nitric oxide and superoxide anions. Manumycin-induced apoptosis correlated with increase in ROS. Quenching of ROS with N-acetyl-L-cysteine prevented cytochrome c release by manumycin. Manumycin induced phosphorylation of p38 MAPK, which was blocked by N-acetyl-L-cysteine. p38 MAPK may be an important signaling mediator in the activation of the intrinsic apoptotic pathway by manumycin because the p38 MAPK inhibitor SB203580 inhibited cytochrome c release and activation of caspase-3 by manumycin. In conclusion, manumycin activated the intrinsic apoptosis pathway via activation of p38 MAPK by oxidative stress. The mechanism of apoptosis induced by manumycin fits the emerging general pattern for apoptosis induced by xenobiotics. Topics: Antineoplastic Agents; Apoptosis; Caspase 3; Cell Line, Tumor; Cytochromes c; Glutathione; Humans; Immunoblotting; Nitric Oxide; Oxidation-Reduction; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Polyenes; Polyunsaturated Alkamides; Reactive Oxygen Species; Signal Transduction; Thyroid Neoplasms | 2006 |
Cell death induced by ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid in anaplastic thyroid carcinoma cells is via a mitochondrial-mediated pathway.
The chemical compound ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), isolated from the Chinese herbal medicine plant Pteris semipinnata L, has been known to exert antitumor activity. However, the molecular mechanism of the action is not understood. In this study we demonstrated that apoptotic cell death induced by 5F in FRO cells was concentration- and time-dependent. The rapid increase in intracellular reactive oxygen species (ROS) levels was involved in the mechanism of cell death. c-Jun N-terminal kinase (JNK) activation and G2 block were related to cell death induced by 5F. Extracellular signal-related kinase (ERK) and p38 were also activated, but as survival signals in response to 5F treatment to counteract the induction of cell death. In the process of the induction of apoptotic cell death, Bax translocated into mitochondria, a reduction in Delta psi(m) was observed and a release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria into the cytosol occurred, indicating that cell death induced by 5F was through a mitochondrial-mediated pathway. Topics: Apoptosis Inducing Factor; Carcinoma; Caspase 3; Cell Death; Cell Line, Tumor; Cell Survival; Cytochromes c; Diterpenes; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; G2 Phase; Humans; JNK Mitogen-Activated Protein Kinases; Membrane Potential, Mitochondrial; Mitochondria; p38 Mitogen-Activated Protein Kinases; Poly(ADP-ribose) Polymerases; Protein Transport; Reactive Oxygen Species; Thyroid Neoplasms; Time Factors | 2005 |