cytochrome-c-t has been researched along with Spinocerebellar-Ataxias* in 2 studies
2 other study(ies) available for cytochrome-c-t and Spinocerebellar-Ataxias
Article | Year |
---|---|
Regulation of BACE1 by miR-29a/b in a cellular model of Spinocerebellar Ataxia 17.
Polyglutamine diseases are a class of neurodegenerative disorders characterized by expansion of polyglutamine repeats, protein aggregation and neuronal cell death in specific regions of the brain. The expansion of a polyglutamine repeat in the TATA binding protein (TBP) causes a neurodegenerative disease, Spinocerebellar Ataxia 17 (SCA17). This disease is characterized by intranuclear protein aggregates and selective loss of cerebellar neurons, including Purkinje cells. MicroRNAs are small, endogenous, regulatory non-coding RNA molecules that bind to messenger RNAs with partial complementarity and interfere in their expression. Here, we used a cellular model of SCA17 where we expressed TBP with 16 (normal) or 59 (pathogenic) polyglutamines and found differential expression of several microRNAs. Specifically, we found two microRNAs, miR-29a/b, were down-regulated. With miR-29a/b down regulation, we found an increased expression of targets of miR-29a/b -beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), p53 upregulated modulator of apoptosis (PUMA) and BAK, increased cytochrome c release and apoptosis. Restoration of miR-29a/b in the pathogenic polyglutamine background reduced the BACE1expression. While, antagomiRs against miR-29a/b resulted in an increase in BACE1 levels and neuronal apoptosis. In spite of the elevation of BACE1 in Alzhemiers disease, its role in neuronal cell death has not been established. Here, we show that increased BACE1 expression is not sufficient to cause apoptosis. However restoring level of BACE1 to normal in polyglutamine cells partially reduced neuronal apoptosis. We show a role for the miR-29a/b-BACE1 regulatory interaction in SCA17, suggesting that this microRNA could be part of a common molecular mechanism leading to neuronal cell death in multiple neurodegenerative disorders. The identification of a common mechanism of microRNA mediated neurodegeneration not only improves our understanding of the process, but also provides promising and novel therapeutic targets. Topics: 5' Untranslated Regions; Amyloid Precursor Protein Secretases; Animals; Apoptosis; Aspartic Acid Endopeptidases; Base Sequence; Binding Sites; Cell Line; Cytochromes c; Gene Knockdown Techniques; Humans; Mice; MicroRNAs; RNA Interference; RNA, Small Interfering; Spinocerebellar Ataxias; TATA-Box Binding Protein | 2012 |
Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia type 12 (SCA12).
Spinal cerebellar ataxia type 12 (SCA12) has been attributed to the elevated expression of ppp2r2b. To better elucidate the pathomechanism of the neuronal disorder and to search for a pharmacological treatment, Drosophila models of SCA12 were generated by overexpression of a human ppp2r2b and its Drosophila homolog tws. Ectopic expression of ppp2r2b or tws caused various pathological features, including neurodegeneration, apoptosis, and shortened life span. More detailed analysis revealed that elevated ppp2r2b and tws induced fission of mitochondria accompanied by increases in cytosolic reactive oxygen species (ROS), cytochrome c, and caspase 3 activity. Transmission electron microscopy revealed that fragmented mitochondria with disrupted cristae were engulfed by autophagosomes in photoreceptor neurons of flies overexpressing tws. Additionally, transgenic flies were more susceptible to oxidative injury induced by paraquat. By contrast, ectopic Drosophila Sod2 expression and antioxidant treatment reduced ROS and caspase 3 activity and extended the life span of the SCA12 fly model. In summary, our study demonstrates that oxidative stress induced by mitochondrial dysfunction plays a causal role in SCA12, and reduction of ROS is a potential therapeutic intervention for this neuropathy. Topics: Animals; Animals, Genetically Modified; Autophagy; Caspase 3; Cytochromes c; Disease Models, Animal; Drosophila melanogaster; Gene Expression Regulation; Humans; Mitochondria; Nerve Tissue Proteins; Oxidative Stress; Protein Phosphatase 2; Reactive Oxygen Species; RNA, Double-Stranded; Spinocerebellar Ataxias | 2011 |