cytochrome-c-t and Rhabdomyolysis

cytochrome-c-t has been researched along with Rhabdomyolysis* in 2 studies

Other Studies

2 other study(ies) available for cytochrome-c-t and Rhabdomyolysis

ArticleYear
Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders?
    Biochimica et biophysica acta, 2014, Volume: 1842, Issue:9

    Long-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid (3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca(2+) retention capacity and ATP content, besides inducing swelling, cytochrome c release and H2O2 production in Ca(2+)-loaded mitochondrial preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca(2+) uptake blocker, prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP) and an important role for Ca(2+), respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic dysfunction observed in patients affected by LCHAD and MTP deficiencies.

    Topics: 3-Hydroxyacyl CoA Dehydrogenases; Acyl-CoA Dehydrogenase, Long-Chain; Adenosine Triphosphate; Animals; Calcium; Cardiomyopathies; Cerebral Cortex; Cytochromes c; Energy Metabolism; Homeostasis; Hydrogen Peroxide; Lauric Acids; Lipid Metabolism, Inborn Errors; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Membrane Transport Proteins; Mitochondrial Myopathies; Mitochondrial Permeability Transition Pore; Mitochondrial Swelling; Mitochondrial Trifunctional Protein; Myristic Acids; NADP; Nervous System Diseases; Oxidants; Palmitic Acids; Rats; Rats, Wistar; Rhabdomyolysis

2014
Proximal tubular cytochrome c efflux: determinant, and potential marker, of mitochondrial injury.
    Kidney international, 2004, Volume: 65, Issue:6

    Cytochrome c (cyt c) is released from mitochondria after tissue injury, but little is known of its subsequent fate. This study was undertaken to ascertain: (1) does cyt c readily gain access to the extracellular space; (2) if so, what are some determinants of this process; and (3) might cyt c release be a potentially useful marker of in vivo tissue damage.. Isolated mouse proximal tubules (PT) were subjected to site 1 (rotenone; Rot), site 2 (antimycin A, AA), or site 3 (hypoxic) respiratory chain blockade (+/- 2 mmol/L glycine, to prevent plasma membrane disruption/cell death). Alternatively, oxidant injury was imposed (Fe(2+) or cholesterol oxidase). Extra- and intracellular cyt c levels were quantified by Western blot. Plasma or urine cyt c levels were also determined after rhabdomyolysis or ischemic acute renal failure (ARF) (in mice), or clinical ARF.. AA, Rot, and hypoxia caused variable degrees of PT cyt c release (AA >> rot approximately hypoxia), but at most, <20% of total cell content was involved. In contrast, Fe(2+) evoked approximately 65% cyt c efflux, and cholesterol oxidation caused approximately 100% cyt c release. Glycine did not block cyt c efflux, dissociating this process from plasma membrane disruption/necrotic cell death. After rhabdomyolysis, plasma cyt c levels rose and correlated with the severity of ARF (r, 0.93 vs. BUNs). Cyt c was detected in urine after both experimental and clinical ARF.. Cell cyt c release is dependent on the site and the type of mitochondrial injury sustained. Oxidative injury, in general, and cholesterol oxidation, in particular, seem particularly relevant in this regard. After mitochondrial release, cyt c traverses plasma membranes, eventuating in the extracellular space. The data suggest that plasma and/or urine cyt c appearance might function as a clinically useful in vivo marker of mitochondrial stress and the tissue injury sustained.

    Topics: Acute Kidney Injury; Adenosine Diphosphate; Adenosine Triphosphate; Animals; Antimycin A; Biomarkers; Cholesterol; Cytochromes c; Extracellular Space; Glycerol; Humans; Hypoxia; In Vitro Techniques; Kidney Tubules, Proximal; Male; Mice; Mitochondria; Oxidation-Reduction; Oxidative Stress; Rhabdomyolysis; Rotenone

2004