cytochrome-c-t and Pulmonary-Fibrosis

cytochrome-c-t has been researched along with Pulmonary-Fibrosis* in 4 studies

Other Studies

4 other study(ies) available for cytochrome-c-t and Pulmonary-Fibrosis

ArticleYear
Mitochondrial Rac1 GTPase import and electron transfer from cytochrome c are required for pulmonary fibrosis.
    The Journal of biological chemistry, 2012, Jan-27, Volume: 287, Issue:5

    The generation of reactive oxygen species, particularly H(2)O(2), from alveolar macrophages is causally related to the development of pulmonary fibrosis. Rac1, a small GTPase, is known to increase mitochondrial H(2)O(2) generation in macrophages; however, the mechanism by which this occurs is not known. This study shows that Rac1 is localized in the mitochondria of alveolar macrophages from asbestosis patients, and mitochondrial import requires the C-terminal cysteine of Rac1 (Cys-189), which is post-translationally modified by geranylgeranylation. Furthermore, H(2)O(2) generation mediated by mitochondrial Rac1 requires electron transfer from cytochrome c to a cysteine residue on Rac1 (Cys-178). Asbestos-exposed mice harboring a conditional deletion of Rac1 in macrophages demonstrated decreased oxidative stress and were significantly protected from developing pulmonary fibrosis. These observations demonstrate that mitochondrial import and direct electron transfer from cytochrome c to Rac1 modulates mitochondrial H(2)O(2) production in alveolar macrophages pulmonary fibrosis.

    Topics: Adolescent; Adult; Aged; Animals; Asbestos; Carcinogens; Cytochromes c; Electron Transport; Electrons; Female; Humans; Macrophages, Alveolar; Male; Mice; Mice, Mutant Strains; Middle Aged; Mitochondrial Proteins; Neuropeptides; Protein Prenylation; Pulmonary Fibrosis; rac GTP-Binding Proteins; rac1 GTP-Binding Protein

2012
Angiotensin-II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial cells.
    Journal of cell science, 2010, May-15, Volume: 123, Issue:Pt 10

    Angiotensin II (Ang II) is a key proapoptotic factor in fibrotic tissue diseases. However, the mechanism of Ang-II-induced cell death in endothelial cells has not been previously elucidated. Using the neutral comet assay and specific receptor antagonists and agonists, we found that Ang-II-mediated apoptosis in primary pulmonary endothelial cells required the AT2 receptor. Ang II caused cytochrome c release from the mitochondria concurrent with caspase-3 activation and DNA fragmentation, and apoptosis was suppressed by an inhibitor of Bax-protein channel formation, implicating mitochondrial-mediated apoptosis. There was no evidence that the extrinsic apoptotic pathway was involved, because caspase-9, but not caspase-8, was activated by Ang-II treatment. Apoptosis required phosphoprotein phosphatase activation, and inhibition of the SHP-2 phosphatase (encoded by Ptpn11) blocked cell death. Reduced levels of anti-apoptotic Bcl-2-family members can initiate intrinsic apoptosis, and we found that Ang-II treatment lowered cytosolic Bcl-x(L) protein levels. Because the protein nucleolin has been demonstrated to bind Bcl-x(L) mRNA and prevent its degradation, we investigated the role of nucleolin in Ang-II-induced loss of Bcl-x(L). RNA-immunoprecipitation experiments revealed that Ang II reduced the binding of nucleolin to Bcl-x(L) mRNA in an AU-rich region implicated in instability of Bcl-x(L) mRNA. Inhibition of SHP-2 prevented Ang-II-induced degradation of Bcl-x(L) mRNA. Taken together, our findings suggest that nucleolin is a primary target of Ang-II signaling, and that Ang-II-activated SHP-2 inhibits nucleolin binding to Bcl-x(L) mRNA, thus affecting the equilibrium between pro- and anti-apoptotic members of the Bcl-2 family.

    Topics: Angiotensin II; Animals; Apoptosis; bcl-X Protein; Caspases; Cattle; Cells, Cultured; Cytochromes c; Endothelial Cells; Enzyme Activation; Nucleolin; Phosphoproteins; Protein Binding; Protein Tyrosine Phosphatase, Non-Receptor Type 11; Pulmonary Artery; Pulmonary Fibrosis; Receptor, Angiotensin, Type 2; RNA-Binding Proteins; Signal Transduction

2010
Effects of vitamin E on mitochondrial dysfunction and asthma features in an experimental allergic murine model.
    Journal of applied physiology (Bethesda, Md. : 1985), 2009, Volume: 107, Issue:4

    We showed recently that IL-4 causes mitochondrial dysfunction in allergic asthma. IL-4 is also known to induce 12/15-lipoxygenase (12/15-LOX), a potent candidate molecule in asthma. Because vitamin E (Vit-E) reduces IL-4 and inhibits 12/15-LOX in vitro, here we tested the hypothesis that Vit-E may be effective in restoring key mitochondrial dysfunctions, thus alleviating asthma features in an experimental allergic murine model. Ovalbumin (OVA)-sensitized and challenged male BALB/c mice showed the characteristic features of asthma such as airway hyperresponsiveness (AHR), airway inflammation, and airway remodeling. In addition, these mice showed increase in the expression and metabolites of 12/15-LOX, reduction in the activity and expression of the third subunit of mitochondrial cytochrome-c oxidase, and increased cytochrome c in lung cytosol, which indicate that OVA sensitization and challenge causes mitochondrial dysfunction. Vit-E was administered orally to these mice, and 12/15-LOX expression, key mitochondrial functions, ultrastructural changes of mitochondria in bronchial epithelia, and asthmatic parameters were determined. Vit-E treatment reduced AHR, Th2 response including IL-4, IL-5, IL-13, and OVA-specific IgE, eotaxin, transforming growth factor-beta1, airway inflammation, expression and metabolites of 12/15-LOX in lung cytosol, lipid peroxidation, and nitric oxide metabolites in the lung, restored the activity and expression of the third subunit of cytochrome-c oxidase in lung mitochondria and bronchial epithelia, respectively, reduced the appearance of cytochrome c in lung cytosol, and also restored mitochondrial ultrastructural changes of bronchial epithelia. In summary, these findings show that Vit-E reduces key mitochondrial dysfunctions and alleviates asthmatic features.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Airway Remodeling; Animals; Anti-Asthmatic Agents; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Asthma; Bronchial Hyperreactivity; Bronchial Provocation Tests; Cytochromes c; Disease Models, Animal; Electron Transport Complex IV; Goblet Cells; Hyperplasia; Hypersensitivity; Immunoglobulin E; Interleukin-13; Interleukin-4; Interleukin-5; Linoleic Acids; Lung; Male; Mice; Mice, Inbred BALB C; Mitochondria; Ovalbumin; Oxidative Stress; Pulmonary Fibrosis; Transforming Growth Factor beta1; Vitamin E

2009
Time-dependent apoptosis of alveolar macrophages from rats exposed to bleomycin: involvement of tnf receptor 2.
    Journal of toxicology and environmental health. Part A, 2004, Sep-10, Volume: 67, Issue:17

    Tumor necrosis factor-alpha (TNF-a) is produced by alveolar macrophages (AM) in response to bleomycin (BLM) exposure. This cytokine has been linked to BLM-induced pulmonary inflammation, an early drug effect, and to lung fibrosis, the ultimate toxic effect of BLM. The present study was carried out to study the time dependence of apoptotic signaling pathways and the potential roles of TNF receptors in BLM-induced AM apoptosis. Male Sprague-Dawley rats were exposed to saline or BLM (1 mg/kg) by intratracheal instillation. At 1, 3, or 7 d postexposure, AM were isolated by bronchoalveolar (BAL) lavage and evaluated for apoptosis by ELISA. The release of cytochrome c from mitochrondria, the activation of caspase-3, -8, and -9, the cleavage of nuclear poly(ADP-ribose) polymerase (PARP), and the expression of TNF receptors (TNF-R1/p55 and TNF-R2/p75), TNF-R-associated factor 2 (TRAF2), and cellular inhibitor of apoptosis 1 (c-IAP1) were determined by immunoblotting. The results showed that BLM exposure induced AM apoptosis, with the highest apoptotic effect occurring at 1 d after exposure and gradually decreasing at 3 and 7 d postexposure, but still remaining significantly above the control level. The maximal translocation of cytochromec from mitochondria into the cytosol was observed at 1 d postexposure, whereas the activation of caspase-9 and caspase-3 and caspase-3-dependent cleavage of PARP was found to reach a peak level at 3 d postexposure. BLM exposure had no marked effect on AM expression of TNF-R1 or caspase-8 activation, but significantly increased the expression of TNF-R2 that was accompanied by a rise in c-IAP1 and a decrease in TRAF2. This induction of TNF-R2 by BLM was significant on d 1 and increased with greater exposure time. In vitro studies showed that pretreatment of naive AM with a TNF-R2 antibody significantly inhibited BLM-induced caspase-3 activity and apoptosis. These results suggest that BLM-induced apoptosis involves multiple pathways in a time-dependent manner. Since maximal BLM-induced AM apoptosis (1 d postexposure) preceded maximal changes in caspase-9 and -3 (3 d postexposure), it is possible that a caspase-independent mechanism is involved in this initial response. These results indicate that the sustained expression of TNF-R2 in AM by BLM exposure may sensitize these cells to TNF-a-mediated toxicity.

    Topics: Animals; Antibiotics, Antineoplastic; Antigens, CD; Apoptosis; Bleomycin; Bronchoalveolar Lavage Fluid; Caspase 3; Caspase 8; Caspase 9; Caspases; Cytochromes c; Drug Evaluation, Preclinical; Environmental Exposure; Enzyme-Linked Immunosorbent Assay; Immunoblotting; Inflammation; Instillation, Drug; Macrophages, Alveolar; Male; Poly(ADP-ribose) Polymerases; Proteins; Pulmonary Fibrosis; Rats; Rats, Sprague-Dawley; Receptors, Tumor Necrosis Factor; Receptors, Tumor Necrosis Factor, Type I; Signal Transduction; Time Factors; TNF Receptor-Associated Factor 2; Translocation, Genetic

2004