cytochrome-c-t has been researched along with Pancreatitis* in 7 studies
7 other study(ies) available for cytochrome-c-t and Pancreatitis
Article | Year |
---|---|
Symptoms of Toxicity and Plasma Cytochrome c Levels in Human Immunodeficiency Virus-infected Patients Receiving Anti-retroviral Therapy in Ghana: A Cross-sectional Study.
Side effects and toxicity have posed a threat to the positive contribution of Antiretroviral Therapy (ART) in the management of human immunodeficiency virus (HIV) infection and Acquired Immune Deficiency Syndrome (AIDS). Symptoms of mitochondrial toxicity including myopathy, pancreatitis, hyperlipidaemia and lactic acidosis are found among HIVinfected patients on ART. To date, there is not a reliable biomarker for monitoring ART-related mitochondrial toxicity. Plasma level of Cytochrome c (Cyt-c) has been proposed as a potential biomarker for ART-related toxicity due to its strong association with apoptosis.. The present study assessed toxicity and level of plasma Cyt-c among HIV-infected patients receiving ART in Ghana.. A total of eighty (80) HIV patients were recruited into the study. Demographic data were obtained from personal interview and medical records. Plasma samples were screened for toxicity from sixty (60) participants due to limited resources, and plasma Cyt-c levels were determined using ELISA. Data were analyzed using Stata version 13.. Out of the 60 participants, 11 (18.3%) were found with symptoms of myopathy, 12 (20%) with pancreatitis, 21 (35%) with hyperlipidaemia and 36 (60%) with at least one of the symptoms. The concentration of plasma Cyt-c was higher (0.122 ng/ml) in patients with toxicity than in those without toxicity (0.05 ng/ml), though the difference was not statistically significant (p = 0.148). There was a weak correlation between plasma Cyt-c level and duration of ART (Spearman rho = 0.02, p = 0.89).. This study, therefore, demonstrated a high prevalence of ART-related toxicity and high levels of Cyt-c in HIV-infected patients in support of the argument that plasma Cyt-c levels are potential biomarkers for determining ART-related toxicity in HIV patients. Topics: Adult; Antiretroviral Therapy, Highly Active; Cross-Sectional Studies; Cytochromes c; Drug-Related Side Effects and Adverse Reactions; Female; Ghana; HIV Infections; Humans; Hyperlipidemias; Male; Middle Aged; Muscular Diseases; Pancreatitis; Young Adult | 2020 |
Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis.
Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis. Topics: Acinar Cells; Animals; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; CASP8 and FADD-Like Apoptosis Regulating Protein; Ceruletide; Cytochromes c; Ethanol; Gene Deletion; Inhibitor of Apoptosis Proteins; Mice; Mice, Inbred C57BL; Necrosis; Pancreas; Pancreatitis; Protein Kinase C-epsilon; Proto-Oncogene Proteins c-bcl-2; Receptor-Interacting Protein Serine-Threonine Kinases; Sincalide | 2014 |
Inflammatory cells regulate p53 and caspases in acute pancreatitis.
The inflammatory response during pancreatitis regulates necrotic and apoptotic rates of parenchymal cells. Neutrophil depletion by use of anti-polymorphonuclear serum (anti-PMN) increases apoptosis in experimental pancreatitis but the mechanism has not been determined. Our study was designed to investigate signaling mechanisms in pancreatic parenchymal cells regulating death responses with neutrophil depletion. Rats were neutrophil depleted with anti-PMN treatment. Then cerulein pancreatitis was induced, followed by measurements of apoptosis signaling pathways. There was greater activation of executioner caspases-3 in the pancreas with anti-PMN treatment compared with control. There were no differences between these groups of animals in mitochondrial cytochrome c release or in activities of initiator caspase-8 and -9. However, there was greater activation of caspase-2 with anti-PMN treatment during cerulein pancreatitis. The upstream regulation of caspases-2 includes p53, which was increased; the p53 negative regulator, Mdm2, was decreased by anti-PMN treatment during cerulein pancreatitis. In vitro experiments using isolated pancreatic acinar cells a pharmacological inhibitor of Mdm2 increased caspase-2/-3 activities, and an inhibitor of p53 decreased these activities during cholecystokinin-8 treatment. Furthermore, experiments using the AR42J cell line Mdm2 small interfering RNA (siRNA) increased caspase-2/-3 activities, and p53 siRNA decreased these activities during cholecystokinin-8 treatment. These results suggest that during acute pancreatitis the inflammatory response inhibits apoptosis. The mechanism of this inhibition involves caspase-2 and its upstream regulation by p53 and Mdm2. Because previous findings indicate that promotion of apoptosis decreases necrosis and severity of pancreatitis, these results suggest that strategies to inhibit Mdm2 or activate p53 will have beneficial effects for treatment of pancreatitis. Topics: Acute Disease; Animals; Apoptosis; Caspase 3; Caspase 8; Caspase 9; Caspases; Cells, Cultured; Ceruletide; Cysteine Endopeptidases; Cytochromes c; Disease Models, Animal; Male; Necrosis; Neutrophils; Pancreatitis; Proto-Oncogene Proteins c-mdm2; Rats; Rats, Sprague-Dawley; RNA, Small Interfering; Tumor Suppressor Protein p53 | 2010 |
Mechanisms regulating cytochrome c release in pancreatic mitochondria.
Mechanisms of acinar cell death in pancreatitis are poorly understood. Cytochrome c release is a central event in apoptosis in pancreatitis. Here, we assessed the regulation of pancreatic cytochrome c release by Ca(2+), mitochondrial membrane potential (Delta Psi m), and reactive oxygen species (ROS), the signals involved in acute pancreatitis. We used both isolated rat pancreatic mitochondria and intact acinar cells hyperstimulated with cholecystokinin-8 (CCK-8; in vitro model of acute pancreatitis).. Micromolar amounts of Ca(2+) depolarised isolated pancreatic mitochondria through a mechanism different from the "classical" (ie, liver) mitochondrial permeability transition pore (mPTP). In contrast with liver, Ca(2+)-induced mPTP opening caused a dramatic decrease in ROS and was not associated with pancreatic mitochondria swelling. Importantly, we found that Ca(2+)-induced depolarisation inhibited cytochrome c release from pancreatic mitochondria, due to blockade of ROS production. As a result, Ca(2+) exerted two opposite effects on cytochrome c release: Ca(2+) per se stimulated the release, whereas Ca(2+)-induced depolarisation inhibited it. This dual effect caused a non-monotonous dose-dependence of cytochrome c release on Ca(2+). In intact acinar cells, cytochrome c release, caspase activation and apoptosis were all stimulated by ROS and Ca(2+), and inhibited by depolarisation, corroborating the findings on isolated pancreatic mitochondria.. These data implicate ROS as a key mediator of CCK-induced apoptotic responses. The results indicate a major role for mitochondria in the effects of Ca(2+ )and ROS on acinar cell death. They suggest that the extent of apoptosis in pancreatitis is regulated by the interplay between ROS, Delta Psi m and Ca(2+). Stabilising mitochondria against loss of Delta Psi m may represent a strategy to mitigate the severity of pancreatitis. Topics: Animals; Apoptosis; Calcium; Calcium Signaling; Cell Death; Cytochromes c; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Membrane Transport Proteins; Pancreas; Pancreatitis; Rats; Reactive Oxygen Species | 2009 |
Nelfinavir/ritonavir reduces acinar injury but not inflammation during mouse caerulein pancreatitis.
There is no clinical treatment that reduces acinar injury during pancreatitis. Human immunodeficiency virus (HIV) protease inhibitors (PI), including nelfinavir (NFV) and ritonavir (RTV), may reduce the rate of pancreatitis in HIV-infected patients. Since permeability transition pore (PTPC)-mediated mitochondrial dysfunction occurs during pancreatitis, and we have shown that PI prevents PTPC opening, we studied its effects in a model of pancreatitis. The effect of NFV plus RTV (NFV/RTV) or vehicle on caerulein-induced pancreatitis in mice was compared by measuring changes in mitochondrial membrane potential in vitro and cytochrome c leakage in vivo. Histological and inflammatory makers were also compared. NFV/RTV improved DiOC6 retention in acini exposed to caerulein in vitro. In vivo NFV prevented cytosolic leakage of cytochrome c and reduced pancreatic acinar injury, active caspase-3 staining, TUNEL-positive acinar cells, and serum amylase (P < 0.05). Conversely, trypsin activity, serum cytokine levels, and pancreatic and lung inflammation were unaffected. NFV/RTV reduces pancreatic injury and acinar cell death in experimental mouse caerulein-induced pancreatitis but does not impact inflammation. Topics: Amylases; Animals; Apoptosis; Caspase 3; Ceruletide; Cytochromes c; Disease Models, Animal; Drug Therapy, Combination; HIV Protease Inhibitors; Inflammation Mediators; Male; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C57BL; Mitochondria; Necrosis; Nelfinavir; Pancreas; Pancreatitis; Ritonavir; Trypsin | 2009 |
Resveratrol ameliorates hepatic injury via the mitochondrial pathway in rats with severe acute pancreatitis.
To gain insight into the processes by which severe acute pancreatitis induced apoptosis takes place in the liver, and to observe the protective effect of resveratrol on hepatic injury, a rat model of severe acute pancreatitis was induced by administering 4% sodium taurocholate through the common biliopancreatic duct. Pancreatic and hepatic injury was assessed by histology. Serum ALT (alanine aminotransferase), AST (aspartate aminotransferase) and total bilirubin were determined by reaction rate assay, and the serum levels of TNF-alpha (tumor necrosis factor-alpha) and IL-6 (interleukin-6) were detected by ELISA (enzyme linked immunosorbent assay). We investigated cytochrome c released from mitochondria and used the RT-PCR (reverse transcription PCR), Western blot technique to evaluate Bax, Bcl-2, and caspase-3 expression levels in hepatic tissue over the time course of apoptosis. Changes in hepatic cell mitochondrial membrane potential were observed by confocal laser scanning microscopy. The majority of cytochrome c release occurred early in apoptosis from mitochondria, which undergo gradual hepatic impairment. The released cytochrome c can be reduced by resveratrol through both up-regulation of Bcl-2 and down-regulation of Bax and caspase-3. These data provide substantial evidence that apoptosis is involved in hepatic injury during the severe acute pancreatitis process and that resveratrol can ameliorate the situation, thus protecting liver function in rats with severe acute pancreatitis. Topics: Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cytochromes c; Disease Models, Animal; Gene Expression Regulation; Liver; Male; Mitochondria, Liver; Pancreatitis; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Resveratrol; Severity of Illness Index; Stilbenes | 2008 |
Fas/FasL play a central role in pancreatitis-induced hepatocyte apoptosis.
Liver injury is a clinical prognostic indicator in acute pancreatitis (AP). We have demonstrated that Kupffer cell-derived FasL mediates liver injury during AP and sought to determine its role in AP-induced hepatocyte apoptosis. AP was induced in National Institutes of Health (NIH) Swiss mice, C57/C57, and Fas-/-, FasL-/- mice by a choline-deficient ethionine-supplement diet. Liver Fas, FasL, p38-mitogen activated phosphokinase (p38-MAPK), poly-ADP ribose polymerase (PARP), and cytochrome C were measured by immunoblotting. Apoptosis was assessed by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) and DNA fragmentation (ELISA). AP upregulated liver FasL (4280 +/- 580 vs. 733 +/- 336), Fas (2866 +/- 595 vs. 649 +/- 111), cytochrome C (6980 +/- 237 vs. 903 +/- 156), and PARP (6393 +/- 591 vs. 466 +/- 261) as well as increased TUNEL staining (40 +/- 2 vs. 14 +/- 1) and DNA fragmentation (all P < 0.03 vs. control). In FasL-/- and Fas-/- mice, AP-induced upregulation of p38-MAPK, PARP, and cytochrome C was significantly attenuated (all P < 0.01 compared to C57/C57 control). In addition, AP-induced DNA fragmentation was reduced 60% in Fas-/- and FasL-/- mice (P < 0.01 vs. C57/C57). AP induces apoptosis by transcriptional activation of Fas/FasL. AP-induced apoptosis was significantly reduced in Fas and FasL knockout mice along with downregulation of p38-MAPK, PARP, and cytochrome C, thereby suggesting a central role for Fas/FasL in hepatocyte apoptosis. The manipulation of interactions between Kupffer cell-derived FasL and hepatocytes may have important therapeutic implications. Topics: Acute Disease; Animals; Apoptosis; Blotting, Western; Cytochromes c; Enzyme-Linked Immunosorbent Assay; Fas Ligand Protein; fas Receptor; Female; Hepatocytes; In Situ Nick-End Labeling; Kupffer Cells; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; p38 Mitogen-Activated Protein Kinases; Pancreatitis; Receptors, Tumor Necrosis Factor; Up-Regulation | 2005 |