cytochrome-c-t has been researched along with Leukemia--Myeloid* in 10 studies
10 other study(ies) available for cytochrome-c-t and Leukemia--Myeloid
Article | Year |
---|---|
Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells.
Direct co-operation between sensitiser molecules BAD and NOXA in mediating apoptosis suggests that therapeutic agents which sensitise to BAD may complement agents which sensitise to NOXA. Dynamic BH3 profiling is a novel methodology that we have applied to the measurement of complementarity between sensitiser BH3 peptide mimetics and therapeutic agents. Using dynamic BH3 profiling, we show that the agent TG02, which downregulates MCL-1, sensitises to the BCL-2-inhibitory BAD-BH3 peptide, whereas the BCL-2 antagonist ABT-199 sensitises to MCL-1 inhibitory NOXA-BH3 peptide in acute myeloid leukaemia (AML) cells. At the concentrations used, the peptides did not trigger mitochondrial outer membrane permeabilisation in their own right, but primed cells to release Cytochrome C in the presence of an appropriate trigger of a complementary pathway. In KG-1a cells TG02 and ABT-199 synergised to induce apoptosis. In heterogeneous AML patient samples we noted a range of sensitivities to the two agents. Although some individual samples markedly favoured one agent or the other, in the group as a whole the combination of TG02 + ABT-199 was significantly more cytotoxic than either agent individually. We conclude that dynamic NOXA and BAD BH3 profiling is a sensitive methodology for investigating molecular pathways of drug action and complementary mechanisms of chemoresponsiveness. Topics: Acute Disease; Antineoplastic Agents; Apoptosis; Biomimetic Materials; Blotting, Western; Bridged Bicyclo Compounds, Heterocyclic; Cell Line, Tumor; Cyclin D1; Cytochromes c; Drug Synergism; Gene Expression Regulation, Leukemic; Heterocyclic Compounds, 4 or More Rings; Humans; Leukemia, Myeloid; Myeloid Cell Leukemia Sequence 1 Protein; Peptide Fragments; Proto-Oncogene Proteins; Reverse Transcriptase Polymerase Chain Reaction; Sulfonamides | 2017 |
Organopalladium compound 7b targets mitochondrial thiols and induces caspase-dependent apoptosis in human myeloid leukemia cells.
The advances in the treatment of chronic myeloid leukemia (CML) during the last years were also accompanied by the development of evading strategies by tumor cells, resulting in chemotherapy resistance in some patients. Patented organopalladium compounds derived from the reaction of N,N-dimethyl-1-phenethylamine (dmpa) with [1,2-ethanebis(diphenylphosphine)] (dppe) exhibited a potent antitumor activity in vivo and in vitro in melanoma cells. We showed here that the cyclopalladated derivative [Pd2(R(+))C(2), N-dmpa)2(μ-dppe)Cl2], named compound 7b, was highly effective to promote cell death in the K562 human leukemia cells and its mechanisms of action were investigated. It was shown that compound 7b was able to promote exclusively apoptotic cell death in K562 cells associated to cytochrome c release and caspase 3 activation. This cytotoxic effect was not observed in normal peripheral mononuclear blood cells. The compound 7b-induced intrinsic apoptotic pathway was triggered by the protein thiol oxidation that resulted in the dissipation of the mitochondrial transmembrane potential. The preventive effect of the dithiothreitol on the compound 7b-induced cell death and all downstream events associated to apoptosis confirmed that death signal was elicited by the thiol oxidation. These findings contribute to the elucidation of the palladacycle 7b-induced cell death mechanism and present this compound as a promising drug in the CML antitumor chemotherapy. Topics: Antineoplastic Agents; Apoptosis; Caspase 3; Cell Survival; Cytochromes c; Dithiothreitol; Drug Screening Assays, Antitumor; Humans; K562 Cells; Leukemia, Myeloid; Leukocytes, Mononuclear; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Proteins; Organometallic Compounds; Oxidation-Reduction; Sulfhydryl Compounds | 2013 |
Requirement of apoptotic protease-activating factor-1 for bortezomib-induced apoptosis but not for Fas-mediated apoptosis in human leukemic cells.
Bortezomib is a highly selective inhibitor of the 26S proteasome and has been approved for clinical use in the treatment of relapsing and refractory multiple myeloma and mantle cell lymphoma. Clinical trials are also underway to assess the role of bortezomib in several other human malignancies, including leukemia. However, the mechanism(s) by which bortezomib acts remain to be fully understood. Here, we studied the molecular requirements of bortezomib-induced apoptosis using the human T-cell leukemic Jurkat cells stably transfected with or without shRNA against apoptotic protease-activating factor-1 (Apaf-1). The Apaf-1-deficient Jurkat T cells were resistant to bortezomib-induced apoptosis, as assessed by caspase-3 activity, poly(ADP-ribose) polymerase cleavage, phosphatidylserine externalization, and hypodiploid DNA content. In contrast, Apaf-1-deficient cells were sensitive to Fas-induced apoptosis. Bortezomib induced an upregulation of the pro-apoptotic protein Noxa, loss of mitochondrial transmembrane potential, and release of cytochrome c in cells expressing or not expressing Apaf-1. Transient silencing of Apaf-1 expression in RPMI 8402 T-cell leukemic cells also diminished bortezomib-induced apoptosis. Fas-associated death domain (FADD)-deficient Jurkat cells were resistant to Fas-mediated apoptosis yet remained sensitive to bortezomib. Our results show that bortezomib induces apoptosis by regulating pathways that are mechanistically different from those activated upon death receptor ligation. Furthermore, in silico analyses of public transcriptomics databases indicated elevated Apaf-1 expression in several hematologic malignancies, including acute lymphoblastic and myeloid leukemia. We also noted variable Apaf-1 expression in a panel of samples from patients with acute lymphoblastic leukemia. Our results suggest that the expression of Apaf-1 may be predictive of the response to proteasome inhibition. Topics: Adolescent; Antineoplastic Agents; Apoptosis; Apoptotic Protease-Activating Factor 1; Boronic Acids; Bortezomib; Caspase 3; Child; Child, Preschool; Cytochromes c; fas Receptor; Fas-Associated Death Domain Protein; Gene Silencing; Humans; Jurkat Cells; Leukemia, Myeloid; Membrane Potential, Mitochondrial; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Proto-Oncogene Proteins c-bcl-2; Pyrazines; RNA, Small Interfering; Transcriptome | 2013 |
Hydroxydibenzoylmethane induces apoptosis through repressing ornithine decarboxylase in human promyelocytic leukemia HL-60 cells.
Ornithine decarboxylase (ODC) is the rate-limiting enzyme in polyamine biosynthesis and a target for chemoprevention. Hydroxydibenzoylmethane (HDB), a derivative of dibenzoylmethane of licorice, is a promising chemopreventive agent. In this paper, we investigated whether HDB would inhibit the ODC pathway to enhance apoptosis in human promyelocytic leukemia HL-60 cells. We found ODC enzyme activity was reduced during HDB treatment. Overexpression of ODC in HL-60 parental cells could reduce HDB-induced apoptosis, which leads to loss of mitochondrial membrane potential (Δψ(m)), through lessening intracellular ROS. Furthermore, ODC overexpression protected cytochrome c release and the activation of caspase-3 following HDB treatment. The results demonstrated HDB-induced apoptosis was through a mechanism of down-regulation of ODC and occurred along a ROS-dependent mitochondria-mediated pathway. Topics: Apoptosis; Caspase 3; Chalcones; Chemoprevention; Cytochromes c; Down-Regulation; Gene Expression; HL-60 Cells; Humans; Immunoblotting; Leukemia, Myeloid; Membrane Potential, Mitochondrial; Mitochondria; Ornithine Decarboxylase; Ornithine Decarboxylase Inhibitors; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction | 2011 |
DMNQ-S17 inhibits constitutive NF-kappaB activation leading to induction of apoptosis through the activation of caspase-3 in human myeloid leukemia U937 cells.
Through cytotoxicity screening with naphthoquinone derivatives, a novel compound 6-(1-oxoallkyl)-5,8-dimethoxy-1,4-naphthoquinone-S17 (DMNQ-S17) showed its potency against human myeloid leukemia U937 cells. Thus, to elucidate the apoptotic mechanism of DMNQ-S17, this study was performed in myeloid leukemia U937 cells by 2,3-bis [2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) assay, eletrophoretic mobility shift assay (EMSA), terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, and Western blotting. In the present study, DMNQ-S17 inhibited constitutive NF kappaB activation and its transcriptional activity in U937 cells. In addition, DMNQ-S17 induced apoptotic features such as apoptotic bodies, cell shrinkage and chromatin condensation in U937 cells. Consistently, flow cytometric analysis showed that DMNQ-S17 increased sub-G1 portion and TUNEL positive cells in a concentration-dependent manner. Furthermore, DMNQ-S17 effectively attenuated mitochondrial membrane potential, released cytochrome C, activated caspase-3 expression, and cleaved poly (ADP-ribose) polymerase (PARP). Reversely, caspase-3 and -9 inhibitors also blocked the DMNQ-S17 induced caspase-3 activation and PARP cleavage in U937 cells. Taken together, these findings suggest that DMNQ-S17 can be a potent anticancer candidate for myeloid leukemias by the suppression of NF-kappaB activation leading to the activation of caspase-3 in human myeloid leukemia U937 cells. Topics: Antineoplastic Agents; Apoptosis; Caspase 3; Caspase Inhibitors; Cytochromes c; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Fluorescent Dyes; Humans; In Situ Nick-End Labeling; Indoles; Leukemia, Myeloid; Lymphoma, Large B-Cell, Diffuse; Male; Membrane Potential, Mitochondrial; Naphthoquinones; NF-kappa B; Poly(ADP-ribose) Polymerases; Prostatic Neoplasms; U937 Cells | 2008 |
Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells.
Caffeic acid phenyl ester (CAPE), a biologically active ingredient of propolis, has several interesting biological properties including antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic, anti-invasive, anti-metastatic and carcinostatic activities. Recently, several groups have reported that CAPE is cytotoxic to tumor cells but not to normal cells. In this study, we investigated the mechanism of CAPE-induced apoptosis in human myeloid leukemia U937 cells. Treatment of U937 cells with CAPE decreased cell viability in a dose-dependent and time-dependent manner. DNA fragmentation assay revealed the typical ladder profile of oligonucleosomal fragments in CAPE-treated U937 cells. In addition, as evidenced by the nuclear DAPI staining experiment, we observed that the nuclear condensation, a typical phenotype of apoptosis, was found in U937 cells treated with 5 microg/ml of CAPE. Therefore, it was suggested that CAPE is a potent agent inducing apoptosis in U937 cells. Apoptotic action of the CAPE was accompanied by release of cytochrome C, reduction of Bcl-2 expression, increase of Bax expression, activation/cleavage of caspase-3 and activation/cleavage of PARP in U937 cells, but not by Fas protein, an initial mediator in the death signaling, or by phospho-eIF2 alpha and CHOP, crucial mediators in ER-mediated apoptosis. From the results, it was concluded that CAPE induces the mitochondria-mediated apoptosis but not death receptors- or ER-mediated apoptosis in U937 cells. Topics: Apoptosis; Caffeic Acids; Caspase 3; Cell Line, Tumor; Chromatin; Cytochromes c; DNA Fragmentation; Endoplasmic Reticulum; Eukaryotic Initiation Factor-2; fas Receptor; Humans; Leukemia, Myeloid; Mitochondria; Phenylethyl Alcohol; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-bcl-2; Receptors, Death Domain; Transcription Factor CHOP; U937 Cells | 2008 |
Enhancement of manumycin A-induced apoptosis by methoxyamine in myeloid leukemia cells.
Farnesyltransferase inhibitors (FTIs) are currently under investigation for leukemia treatment. We evaluated the FTI manumycin A (manumycin) in two myeloid leukemia cell lines (U937 and HL-60). Manumycin induced nitric oxide production and apoptosis of the leukemia cells. Nitric oxide or other reactive oxygen species may induce oxidative DNA damage, and the number of apurinic sites increased after manumycin treatment, which was reversed by concurrent treatment with N-acetyl-L-cysteine. Since repair of DNA damage is important to cell survival, we hypothesized that methoxyamine, an inhibitor of base-excision repair, would enhance the antineoplastic effect of manumycin. The combination of manumycin and methoxyamine resulted in enhanced apoptosis by six criteria increased annexin V binding, release of mitochondrial cytochrome c into the cytosol, activation of caspase-9, activation of caspase-3, specific cleavage of poly-adenosyl ribose polymerase, and increase in the sub-G1 cell cycle fraction. The drug combination enhanced inhibition on the soft agar clonogenic assay and on the formazan dye cell viability assay. The effects of manumycin or manumycin plus methoxyamine on apoptosis were blocked by N-acetyl-L-cysteine, and partially by nitric oxide synthase inhibitors or scavenger of peroxide. We conclude that methoxyamine enhances manumycin-induced apoptosis in myeloid leukemia cells. Topics: Apoptosis; Caspase 3; Caspase 9; Caspases; Cell Survival; Cytochromes c; Cytosol; DNA, Neoplasm; Drug Synergism; Enzyme Inhibitors; HL-60 Cells; Humans; Hydroxylamines; Leukemia, Myeloid; Leukemia, Promyelocytic, Acute; Mitochondria; Nitric Oxide; Poly(ADP-ribose) Polymerases; Polyenes; Polyunsaturated Alkamides; U937 Cells | 2005 |
Identification of deficient mitochondrial signaling in apoptosis resistant leukemia cells by flow cytometric analysis of intracellular cytochrome c, caspase-3 and apoptosis.
Deficient activation of apoptosis signaling pathways may be responsible for treatment failure of malignant diseases. In primary leukemia samples the detection of deficient mitochondrial apoptosis signaling would enable identification of chemo-resistant cells. To investigate the key events of apoptosis at the mitochondrial level, we developed a flow cytometric method for simultaneous detection of mitochondrial cytochrome c release and caspase-3 processing using conformation sensitive monoclonal antibodies. This method proved to identify deficient mitochondrial apoptosis signaling in leukemia cells overexpressing Bcl-2 by a pattern of apoptosis resistance, deficient cytochrome c reduction and partial processing of caspase-3. In primary leukemia cells, reduction of cytochrome c and caspase-3 activation was induced by treatment with anticancer drugs in vitro. In leukemia cells of a patient with resistant disease, a pattern of deficient apoptosis signaling as in Bcl-2 transfected cells was observed, suggesting that deficient mitochondrial signaling contributed to the clinical phenotype of drug resistance in this patient. Flow cytometric analysis of mitochondrial apoptosis signaling may provide a useful tool for the prediction of drug resistance and treatment failure in primary leukemia. Topics: Antibodies, Monoclonal; Apoptosis; Blotting, Western; Caspase 3; Caspases; Cell Membrane Permeability; Cyclophosphamide; Cytochromes c; Drug Resistance, Neoplasm; Etoposide; fas Receptor; Flow Cytometry; Humans; Jurkat Cells; Leukemia; Leukemia, Lymphoid; Leukemia, Myeloid; Microscopy, Fluorescence; Mitochondria; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Transfection | 2004 |
Lanostanoid triterpenes from Laetiporus sulphureus and apoptosis induction on HL-60 human myeloid leukemia cells.
A new lanostanoid triterpene, 3-oxosulfurenic acid (1), together with three known triterpenes (3, 4, and 7) were isolated from the fruit bodies of Laetiporus sulphureus. Cytotoxicity of these compounds and their derivatives (2, 5, and 6) was evaluated on HL-60 cells. Further studies revealed that acetyl eburicoic acid (5) was the most potent apoptosis inducer. Apoptosis was accompanied by both the activation of caspase-3 and the fragmentation of poly(ADP-ribose) polymerase-1 and was also associated with an early release of cytochrome c from the mitochondria. Topics: Apoptosis; Colombia; Cytochromes c; HL-60 Cells; Humans; Lanosterol; Leukemia, Myeloid; Mitochondria; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Poly(ADP-ribose) Polymerases; Polyporaceae; Triterpenes | 2004 |
Potent induction of apoptosis by germacranolide sesquiterpene lactones on human myeloid leukemia cells.
This paper studies the cytotoxic effect induced by four known natural sesquiterpene lactones (tatridin A, tamirin, reynosin, ineupatorolide A) and one synthetic derivative (tatridin A diacetate) on the myeloid leukemia cell lines HL-60 and U937. Tatridin A diacetate and ineupatorolide A were found to be the most cytotoxic compounds with growth inhibition caused by induction of apoptosis as determined by flow cytometry and microscopy of nuclear changes. The results reported here support the conclusion that apoptosis was accompanied by both the activation of caspase-3 and the fragmentation of poly(ADP-ribose) polymerase-1 and was also associated with an early release of cytochrome c from the mitochondria. Topics: Apoptosis; Cytochromes c; Dose-Response Relationship, Drug; HL-60 Cells; Humans; Leukemia, Myeloid; Sesquiterpenes, Germacrane; U937 Cells | 2003 |