cytochrome-c-t has been researched along with Hyperoxia* in 8 studies
8 other study(ies) available for cytochrome-c-t and Hyperoxia
Article | Year |
---|---|
Clusterin Deficiency Exacerbates Hyperoxia-Induced Acute Lung Injury.
Exposure to high oxygen concentrations leads to generation of excessive reactive oxygen species, causing cellular injury and multiple organ dysfunctions and is associated with a high mortality rate. Clusterin (CLU) is a heterodimeric glycoprotein that mediates several intracellular signaling pathways, including cell death and inflammation. However, the role of CLU in the pathogenesis of hyperoxic acute lung injury (HALI) is unknown. Wild-type (WT) and CLU-deficient mice and cultured human airway epithelial cells were used. Changes in cell death- and inflammation-related molecules with or without hyperoxia exposure in cells and animals were determined. Hyperoxia induced an increase in CLU expression in mouse lungs and human airway epithelial cells. Mice lacking CLU had increased HALI and mortality rate compared with WT mice. In vitro, CLU-disrupted cells showed enhanced release of cytochrome c, Bax translocation, cell death and inflammatory cytokine expression. However, treatment with recombinant CLU attenuated hyperoxia-induced apoptosis. Moreover, the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses revealed metabolic pathways, hematopoietic cell lineage, response to stress and localization and regulation of immune system that were differentially regulated between WT and CLU Topics: Acute Lung Injury; Animals; Apoptosis; bcl-2-Associated X Protein; Clusterin; Cytochromes c; Epithelial Cells; Gene Expression Profiling; Gene Expression Regulation; Humans; Hyperoxia; Inflammation; Lung; Male; Membrane Potential, Mitochondrial; Mice, Inbred C57BL; Mice, Knockout; Microarray Analysis; RNA, Messenger | 2021 |
Hyperoxia results in increased aerobic metabolism following acute brain injury.
Acute brain injury is associated with depressed aerobic metabolism. Below a critical mitochondrial pO Topics: Blood Flow Velocity; Brain; Brain Injuries; Cerebrovascular Circulation; Cytochromes c; Energy Metabolism; Humans; Hyperoxia; Lactic Acid; Microdialysis; Mitochondria; Neurophysiological Monitoring; Oxidation-Reduction; Oxygen Consumption; Pyruvic Acid; Ultrasonography, Doppler, Transcranial | 2017 |
Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis.
Within the last decade, it became clear that oxygen contributes to the pathogenesis of neonatal brain damage, leading to neurocognitive impairment of prematurely born infants in later life. Recently, we have identified a critical role for receptor-mediated neuronal apoptosis in the immature rodent brain. However, the contribution of the intrinsic apoptotic pathway accompanied by activation of caspase-2 under hyperoxic conditions in the neonatal brain still remains elusive. Inhibition of caspases appears a promising strategy for neuroprotection. In order to assess the influence of specific caspases on the developing brain, we applied a recently developed pentapeptide-based group II caspase inhibitor (5-(2,6-difluoro-phenoxy)-3(R,S)-(2(S)-(2(S)-(3-methoxycarbonyl-2(S)-(3-methyl-2(S)-((quinoline-2-carbonyl)-amino)-butyrylamino)propionylamino)3-methylbutyrylamino)propionylamino)-4-oxo-pentanoic acid methyl ester; TRP601). Here, we report that elevated oxygen (hyperoxia) triggers a marked increase in active caspase-2 expression, resulting in an initiation of the intrinsic apoptotic pathway with upregulation of key proteins, namely, cytochrome c, apoptosis protease-activating factor-1, and the caspase-independent protein apoptosis-inducing factor, whereas BH3-interacting domain death agonist and the anti-apoptotic protein B-cell lymphoma-2 are downregulated. These results coincide with an upregulation of caspase-3 activity and marked neurodegeneration. However, single treatment with TRP601 at the beginning of hyperoxia reversed the detrimental effects in this model. Hyperoxia-mediated neurodegeneration is supported by intrinsic apoptosis, suggesting that the development of highly selective caspase inhibitors will represent a potential useful therapeutic strategy in prematurely born infants. Topics: Animals; Animals, Newborn; Apoptosis; Apoptotic Protease-Activating Factor 1; BH3 Interacting Domain Death Agonist Protein; Brain; Brain Injury, Chronic; Caspase 2; Caspase 3; Caspase Inhibitors; Cysteine Endopeptidases; Cytochromes c; Gene Expression Regulation; Humans; Hyperoxia; Infant; Neuroprotective Agents; Oligopeptides; Oxygen; Premature Birth; Quinolines; Rats; Rats, Wistar; Signal Transduction | 2012 |
In vivo hyperoxic preconditioning protects against rat-heart ischemia/reperfusion injury by inhibiting mitochondrial permeability transition pore opening and cytochrome c release.
In vivo hyperoxic preconditioning (PC) has been shown to protect against ischemia/reperfusion (I/R) myocardial damage. Mitochondrial permeability transition pore (MPTP) opening is an important event in cardiomyocyte cell death occurring during I/R and therefore a possible target for cardioprotection. We tested the hypothesis that in vivo hyperoxic PC, obtained by mechanical ventilation of animals, could protect heart against I/R injury by inhibiting MPTP opening and cytochrome c release from mitochondria. Mechanically ventilated rats were first exposed to a short period of hyperoxia and isolated hearts were subsequently subjected to I/R in a Langendorff apparatus. Hyperoxic PC significantly improved the functional recovery of hearts on reperfusion, reduced the infarct size, and decreased necrotic damage as shown by the reduced release of lactate dehydrogenase. Mitochondria from hyperoxic PC hearts were less sensitive than mitochondria from reperfused heart to MPTP opening. In addition, hyperoxic PC prevented mitochondrial NAD(+) depletion, an indicator of MPTP opening, and cytochrome c release as well as cardiolipin oxidation/depletion associated with I/R. Together, these results demonstrate that hyperoxic PC protects against heart I/R injury by inhibiting MPTP opening and cytochrome c release. Thus, in vivo hyperoxic PC may represent a useful strategy for the treatment of cardiac I/R injury and could have potential applications in clinical practice. Topics: Animals; Calcium; Cardiolipins; Cytochromes c; Hyperoxia; Male; Mitochondrial Membrane Transport Proteins; Mitochondrial Membranes; Mitochondrial Permeability Transition Pore; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; NAD; Necrosis; Oxygen; Rats; Rats, Wistar | 2011 |
Lung injury caused by high tidal volume mechanical ventilation and hyperoxia is dependent on oxidant-mediated c-Jun NH2-terminal kinase activation.
Both prolonged exposure to hyperoxia and large tidal volume mechanical ventilation can each independently cause lung injury. However, the combined impact of these insults is poorly understood. We recently reported that preexposure to hyperoxia for 12 h, followed by ventilation with large tidal volumes, induced significant lung injury and epithelial cell apoptosis compared with either stimulus alone (Makena et al. Am J Physiol Lung Cell Mol Physiol 299: L711-L719, 2010). The upstream mechanisms of this lung injury and apoptosis have not been clearly elucidated. We hypothesized that lung injury in this model was dependent on oxidative signaling via the c-Jun NH(2)-terminal kinases (JNK). We, therefore, evaluated lung injury and apoptosis in the presence of N-acetyl-cysteine (NAC) in both mouse and cell culture models, and we provide evidence that NAC significantly inhibited lung injury and apoptosis by reducing the production of ROS, activation of JNK, and apoptosis. To confirm JNK involvement in apoptosis, cells treated with a specific JNK inhibitor, SP600125, and subjected to preexposure to hyperoxia, followed by mechanical stretch, exhibited significantly reduced evidence of apoptosis. In conclusion, lung injury and apoptosis caused by preexposure to hyperoxia, followed by high tidal volume mechanical ventilation, induces ROS-mediated activation of JNK and mitochondrial-mediated apoptosis. NAC protects lung injury and apoptosis by inhibiting ROS-mediated activation of JNK and downstream proapoptotic signaling. Topics: Acetylcysteine; Animals; Anthracenes; Apoptosis; Caspase 3; Caspase Inhibitors; Cell Line; Cytochromes c; Epithelial Cells; Hyperoxia; JNK Mitogen-Activated Protein Kinases; Lung Injury; Male; Mice; Mice, Inbred C57BL; Mitochondria; Oxidants; Oxidative Stress; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Reactive Oxygen Species; Respiration, Artificial; Tidal Volume | 2011 |
Thioredoxin-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls.
The mechanisms of hyperoxia-induced lung injury remain poorly defined. Thioredoxin-1 (TRX-1) is a small ubiquitous protein that acts as an important radical scavenger. We investigated the effect of TRX-1 on apoptosis in hyperoxia-induced lung injury.. Mice were exposed to 98% O(2) to produce a model of hyperoxia-induced lung injury. Using transgenic mice overexpressing human TRX-1 (hTRX-1), we assessed lung structure (n=4 per group), immunohistochemical staining for 8-hydroxy-deoxyguanosine (n=4 per group), TUNEL staining (n=5 per group), cytokine (n=5 per group) of IL-1beta and IL-6, and protein (n=6 per group) and m-RNA levels (n=4 per group) (or both) of cytochrome c, Bcl-2, Bax, p21, and p53 in the lungs.. After exposure to hyperoxia, hTRX-1 transgenic mice had significantly decreased alveolar damage. The apoptotic index was significantly lower in hTRX-1 transgenic mice than in wild-type (WT) mice after exposure to hyperoxia. Protein expression of cytochrome c in the lung was significantly lower in hTRX-1 transgenic mice than in WT mice after exposure to hyperoxia. Protein expression and m-RNA levels of Bcl-2 in the lung were significantly higher in hTRX-1 transgenic mice than in WT mice after exposure to hyperoxia. TRX-1 had no effect on the protein and m-RNA levels of Bax and p21. The protein and m-RNA levels of p53 was unaffected by hyperoxia in hTRX-1 transgenic mice. The cytokine level of IL-6 was significantly higher in hTRX-1 transgenic mice than in WT mice after exposure to hyperoxia. TRX-1 had no effect on cytokine level of IL-1beta.. These findings suggest that overexpression of hTRX-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls. The up-regulating Bcl-2 protein is considered to be one of antiapoptotic effects of TRX-1 in hyperoxia-induced lung injury. Topics: Animals; Antioxidants; Apoptosis; bcl-2-Associated X Protein; Cytochromes c; Cytokines; Genes, p53; Hyperoxia; Lung; Lung Diseases; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Pulmonary Alveoli; RNA, Messenger; Thioredoxins; Up-Regulation | 2007 |
Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway.
Bcl-2 is an antiapoptotic molecule that prevents oxidative stress damage and cell death. We investigated the possible protective mechanisms mediated by Bcl-2 during hyperoxia-induced cell death in L929 cells. In these cells, hyperoxia promoted apoptosis without DNA fragmentation. Overexpression of Bcl-2 significantly protected cells from oxygen-induced apoptosis, as shown by measurement of lactate dehydrogenase release, quantification of apoptotic nuclei, and detection of Annexin-V-positive cells. Bcl-2 partially prevented mitochondrial damage and interfered with the mitochondrial proapoptotic signaling pathway: it reduced Bax translocation to mitochondria, decreased the release of cytochrome c, and inhibited caspase 3 activation. However, treatment with the caspase inhibitor Z-VAD.fmk failed to rescue the cells from death, indicating that protection provided by Bcl-2 was due not only to caspase inhibition. Bcl-2 also prevented the release of mitochondrial apoptotic inducing factor, a mediator of caspase-independent apoptosis, correlating with the absence of oligonucleosomal DNA fragmentation. In addition, Bcl-2-overexpressing cells showed significantly higher intracellular amounts of glutathione after 72 h of oxygen exposure. In conclusion, our results demonstrate that the overexpression of Bcl-2 is able to prevent hyperoxia-induced cell death, by affecting mitochondria-dependent apoptotic pathways and increasing intracellular antioxidant compounds. Topics: Adenosine Triphosphate; Animals; Apoptosis; Blotting, Western; Caspase Inhibitors; Caspases; Cell Line; Cytochromes c; Glutathione; Hyperoxia; Immunohistochemistry; Mice; Microscopy, Electron; Mitochondria; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species | 2007 |
Mitochondrial cytochrome c release is a key event in hyperoxia-induced lung injury: protection by cyclosporin A.
Hyperoxia is known to induce extensive alveolar cell death by still poorly defined mechanisms. In this study, the mitochondria-dependent cell death pathway was explored during hyperoxia-induced lung injury in mice. We observed a progressive release of cytochrome c from the mitochondria into the cytosol of alveolar cells. This release was accompanied by the translocation of the proapoptotic protein Bax from cytosol to mitochondria without detectable activation of caspase-3. As cytochrome c release can be induced by mitochondrial membrane alteration and permeability transition (MPT), mice were treated with cyclosporin A, which specifically inhibits MPT. Cyclosporin A treatment prevented mitochondrial release of cytochrome c during hyperoxia and concomitantly preserved mitochondria from extensive swelling and crista disorganization, as assessed by electron microscopy analysis of alveolar epithelial cells. These morphological and biochemical observations correlated with decreased lung tissue damage, as evaluated by morphological score and lung weight. In conclusion, mitochondrial damage and cytochrome c release are important linked events in hyperoxia-induced lung injury and can be efficiently blocked by cyclosporin A. Topics: Animals; bcl-2-Associated X Protein; Caspase 3; Caspases; Cyclosporine; Cytochromes c; Female; Hyperoxia; Immunosuppressive Agents; Lung Diseases; Mice; Mice, Inbred C57BL; Mitochondria; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Pulmonary Alveoli | 2004 |