cytochrome-c-t has been researched along with Heart-Failure* in 16 studies
1 review(s) available for cytochrome-c-t and Heart-Failure
Article | Year |
---|---|
Serendipity and the discovery of novel compounds that restore mitochondrial plasticity.
The mitochondrial electron transport chain (ETC) plays a central role in energy generation in the cell. Mitochondrial dysfunctions diminish adenosine triphosphate (ATP) production and result in insufficient energy to maintain cell function. As energy output declines, the most energetic tissues are preferentially affected. To satisfy cellular energy demands, the mitochondrial ETC needs to be able to elevate its capacity to produce ATP at times of increased metabolic demand or decreased fuel supply. This mitochondrial plasticity is reduced in many age-associated diseases. In this review, we describe the serendipitous discovery of a novel class of compounds that selectively target cardiolipin on the inner mitochondrial membrane to optimize efficiency of the ETC and thereby restore cellular bioenergetics in aging and diverse disease models, without any effect on the normal healthy organism. The first of these compounds, SS-31, is currently in multiple clinical trials. Topics: Adenosine Triphosphate; Aging; Burns; Cardiolipins; Cytochromes c; Drug Discovery; Electron Transport; Energy Metabolism; Heart Failure; Humans; Insulin Resistance; Mitochondria; Myocardial Reperfusion Injury; Oligopeptides | 2014 |
1 trial(s) available for cytochrome-c-t and Heart-Failure
Article | Year |
---|---|
Efficiency and mechanisms of the antioxidant effect of standard therapy and refracterin in the treatment of chronic heart failure in elderly patients with postinfarction cardiosclerosis.
Refracterin therapy of patients with chronic heart failure caused by coronary heart disease and postinfarction cardiosclerosis markedly promoted improvement in the pulmonary and systemic circulation in comparison with patients receiving traditional therapy. The mean functional class of chronic cardiac failure decreased by 43% under the effect of refracterin vs. 27% decrease in the group receiving traditional therapy. After 1-month refracterin course the end-systolic and end-diastolic sizes of the left ventricle decreased by 12 and 7%, respectively, ejection fraction increased by 7.2% in comparison with the initial level, total oxidant activity and MDA content in the plasma decreased significantly, while total antioxidant activity, catalase and SOD activities, cytochrome C, NADH, and NADPH levels increased. The prooxidant-antioxidant system was shifted towards antioxidants, which attests to activation of the defense and adaptive mechanisms after administration of refracterin, which is especially important in elderly patients with initially decreased reserve potentialities of the antioxidant defense system. Topics: Acetyldigoxins; Aged; Aged, 80 and over; Antioxidants; Cardiotonic Agents; Cytochromes c; Drug Combinations; Heart Failure; Humans; Inosine; Myocardial Infarction; NAD; Oxidative Stress; Oxyfedrine; Sclerosis | 2004 |
14 other study(ies) available for cytochrome-c-t and Heart-Failure
Article | Year |
---|---|
Effects of moxibustion at bilateral Feishu (BL13) and Xinshu (BL15) combined with benazepril on myocardial cells apoptosis index and apoptosis-related proteins cytochrome c and apoptosis-inducing factor in rats with chronic heart failure.
To observe the effects of moxibustion at bilateral Feishu (BL13) and Xinshu (BL15) combined with benazepril on myocardial cells apoptosis index, the expression levels of apoptosis-related proteins cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) in chronic heart failure (CHF) rats.. Sixty-five rats were randomly divided into normal group () and model-I group (). After modeling, CHF rats in model-I group were divided into model group, moxibustion group, benazepril group, moxibustion plus benazepril group (abbreviated as aibei group, the same below), 10 rats in each group. Echocardiogram index was examined by echocardiography. Hemodynamic indices were measured by rat cardiac function meter. Serum B-type brain natriuretic peptide (BNP) was detected by enzyme-linked immunosorbent assay. Myocardial cells apoptosis index was detected by terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. Pathological changes of myocardial tissues were observed by hematoxylin and eosin staining. The expression levels of Cyt-C and AIF in myocardial tissues were detected by Western blot.. Compared with normal group, ejection fraction and left ventricular diameter shortening rate in model-Ⅰ group were significantly reduced, myocardial cells of rats in model group exhibited unclear transverse striations, cells swellings and vacuoles, cardiac functions were deteriorated, serum BNP level, myocardial cells apoptosis index, and the expression levels of Cyt-C and AIF were significantly increased. Compared with model group, myocardial cells of rats in moxibustion group, benazepril group, and aibei group were dyed more evenly, muscle fibers were arranged relatively neatly, cardiac functions were improved, serum BNP level, myocardial cells apoptosis index, and the expression levels of Cyt-C and AIF were significantly decreased. Compared with aibei group, cardiac functions were worsened, myocardial cells apoptosis index, and the expression levels of Cyt-C and AIF were increased.. Moxibustion at bilateral Feishu (BL13) and Xinshu (BL15) combined with benazepril could improve CHF better than moxibustion at bilateral Feishu (BL13) and Xinshu (BL15) or benazepril alone. The mechanisms might be that they can inhibit the expressions of Cyt-C and AIF, and inhibit the apoptosis of cardiomyocytes. Topics: Animals; Apoptosis; Apoptosis Inducing Factor; Benzazepines; Chronic Disease; Cytochromes c; Heart Failure; Humans; Moxibustion; Rats; Rats, Sprague-Dawley | 2022 |
Pathological alterations in liver injury following congestive heart failure induced by volume overload in rats.
Heart failure has emerged as a disease with significant public health implications. Following progression of heart failure, heart and liver dysfunction are frequently combined in hospitalized patients leading to increased morbidity and mortality. Here, we investigated the underlying pathological alterations in liver injury following heart failure. Heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. Sham operated and ACF rats were compared for their morphometric and hemodynamic data, for histopathological and ultrastructural changes in the liver as well as differences in the expression of apoptotic factors. ACF-induced heart failure is associated with light microscopic signs of apparent congestion of blood vessels, increased apoptosis and breakdown of hepatocytes and inflammatory cell inifltration were observed. The glycogen content depletion associated with the increased hepatic fibrosis, lipid globule formation was observed in ACF rats. Moreover, cytoplasmic organelles are no longer distinguishable in many ACF hepatocytes with degenerated fragmented rough endoplasmic reticulum, shrunken mitochondria and heavy cytoplasm vacuolization. ACF is associated with the upregulation of the hepatic TUNEL-positive cells and proapoptotic factor Bax protein concomitant with the mitochondrial leakage of cytochrome C into the cell cytoplasm and the transfer of activated caspase 3 from the cytoplasm into the nucleus indicating intrinsic apoptotic events. Taken together, the results demonstrate that ACF-induced congestive heart failure causes liver injury which results in hepatocellular apoptotic cell death mediated by the intrinsic pathway of mitochondrial cytochrome C leakage and subsequent transfer of activated caspase 3 into to the nucleus to initiate overt DNA fragmentation and cell death. Topics: Active Transport, Cell Nucleus; Animals; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cell Nucleus; Cytochromes c; Cytosol; Enzyme Activation; Gene Expression Regulation; Heart Failure; Hepatocytes; Liver; Male; Mitochondria; Myocardium; Nerve Tissue Proteins; Organ Size; Rats; Rats, Wistar; Stroke Volume | 2017 |
Mitochondrial 8-oxoguanine glycosylase decreases mitochondrial fragmentation and improves mitochondrial function in H9C2 cells under oxidative stress conditions.
The mitochondrial DNA base modification 8-hydroxy 2'-deoxyguanine (8-OHdG) is one of the most common DNA lesions induced by reactive oxygen species (ROS) and is considered an index of DNA damage. High levels of mitochondrial 8-OHdG have been correlated with increased mutation, deletion, and loss of mitochondrial (mt) DNA, as well as apoptosis. 8-Oxoguanosine DNA glycosylase-1 (OGG1) recognizes and removes 8-OHdG to prevent further DNA damage. We evaluated the effects of OGG1 on mtDNA damage, mitochondrial function, and apoptotic events induced by oxidative stress using H9C2 cardiac cells treated with menadione and transduced with either Adv-Ogg1 or Adv-Control (empty vector). The levels of mtDNA 8-OHdG and the presence of apurinic/apyrimidinic (AP) sites were decreased by 30% and 35%, respectively, in Adv-Ogg1 transduced cells (P < 0.0001 and P < 0.005, respectively). In addition, the expression of base excision repair (BER) pathway members APE1 and DNA polymerase γ was upregulated by Adv-Ogg1 transduction. Cells overexpressing Ogg1 had increased membrane potential (P < 0.05) and decreased mitochondrial fragmentation (P < 0.005). The mtDNA content was found to be higher in cells with increased OGG1 (P < 0.005). The protein levels of fission and apoptotic factors such as DRP1, FIS1, cytoplasmic cytochrome c, activated caspase-3, and activated caspase-9 were lower in Adv-Ogg1 transduced cells. These observations suggest that Ogg1 overexpression may be an important mechanism to protect cardiac cells against oxidative stress damage. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Apoptosis; Cardiotonic Agents; Caspase 3; Caspase 9; Cell Line; Cell Survival; Cytochromes c; DNA Damage; DNA Glycosylases; DNA Polymerase gamma; DNA-(Apurinic or Apyrimidinic Site) Lyase; DNA-Directed DNA Polymerase; DNA, Mitochondrial; Dynamins; Guanine; Heart Failure; Mice; Mitochondria, Heart; Mitochondrial Proteins; Myocardium; Oxidative Stress; Rats; Vitamin K 3 | 2014 |
Role of the calcium-sensing receptor in cardiomyocyte apoptosis via the sarcoplasmic reticulum and mitochondrial death pathway in cardiac hypertrophy and heart failure.
Alterations in calcium homeostasis in the intracellular endo/sarcoplasmic reticulum (ER/SR) and mitochondria of cardiomyocytes cause cell death via the SR and mitochondrial apoptotic pathway, contributing to ventricular dysfunction. However, the role of the calcium-sensing receptor (CaR) in cardiac hypertrophy and heart failure has not been studied. This study examined the possible involvement of CaR in the SR and mitochondrial apoptotic pathway in an experimental model of heart failure.. In Wistar rats, cardiac hypertrophy and heart failure were induced by subcutaneous injection of isoproterenol (Iso). Calindol, an activator of CaR, and calhex231, an inhibitor of CaR, were administered by caudal vein injection. Cardiac remodeling and left ventricular function were then analyzed in these rats. After 2, 4, 6 and 8 weeks after the administration of Iso, the rats developed cardiac hypertrophy and failure. The cardiac expression of ER chaperones and related apoptotic proteins was significantly increased in the failing hearts. Furthermore, the expression of ER chaperones and the apoptotic rate were also increased with the administration of calindol, whereas the expression of these proteins was reduced with the treatment of calhex231. We also induced cardiac hypertrophy and failure via thoracic aorta constriction (TAC) in mice. After 2 and 4 weeks of TAC, the expression of ER chaperones and apoptotic proteins were increased in the mouse hearts. Furthermore, Iso induced ER stress and apoptosis in cultured cardiomyocytes, while pretreatment with calhex231 prevented ER stress and protected the myocytes against apoptosis. To further investigate the effect of CaR on the concentration of intracellular calcium, the calcium concentration in the SR and mitochondria was determined with Fluo-5N and x-rhod-1 and the mitochondrial membrane potential was examined with JC-1 using laser confocal microscopy. After treatment with Iso for 48 hours, activation of CaR reduced [Ca(2+)]SR, increased [Ca(2+)]m, decreased the mitochondrial membrane potential, increased the expression of ER stress chaperones and related apoptotic proteins, and induced the release of cytochrome c from the mitochondria.. Our results demonstrated that CaR activation caused Ca(2+) release from the SR into the mitochondria and induced cardiomyocyte apoptosis through the SR and mitochondrial apoptotic pathway in failing hearts. Topics: Animals; Aorta, Thoracic; Apoptosis; Benzamides; Calcium; Cardiomegaly; Cyclohexylamines; Cytochromes c; Heart Failure; Indoles; Inositol 1,4,5-Trisphosphate Receptors; Isoproterenol; Male; Membrane Potential, Mitochondrial; Mitochondria; Molecular Chaperones; Myocytes, Cardiac; Naphthalenes; Rats; Rats, Wistar; Receptors, Calcium-Sensing; Sarcoplasmic Reticulum | 2013 |
Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection.
Despite of its known cardiotoxicity, doxorubicin is still a highly effective anti-neoplastic agent in the treatment of several cancers. In the present study, the cardioprotective effect of nicorandil was investigated on hemodynamic alterations and mitochondrial dysfunction induced by cumulative administration of doxorubicin in rats. Doxorubicin was injected i.p. over 2 weeks to obtain a cumulative dose of 18 mg/kg. Nicorandil (3 mg/kg/day) was given orally with or without doxorubicin treatment. Heart rate and aortic blood flow were recorded 24 h after receiving the last dose of doxorubicin. Rats were then sacrificed and hearts were rapidly excised for estimation of caspase-3 activity, phosphocreatine and adenine nucleotides contents in addition to cytochrome c, Bcl2, Bax and caspase 3 expression. Moreover, mitochondrial oxidative phosphorylation capacity, creatine kinase activity and oxidative stress markers were measured together with the examination of DNA fragmentation and ultrastructural changes. Nicorandil was effective in alleviating the decrement of heart rate and aortic blood flow and the state of mitochondrial oxidative stress induced by doxorubicin cardiotoxicity. Nicorandil also preserved phosphocreatine and adenine nucleotides contents by restoring mitochondrial oxidative phosphorylation capacity and creatine kinase activity. Moreover, nicorandil provided a significant cardioprotection via inhibition of apoptotic signaling pathway, DNA fragmentation and mitochondrial ultrastructural changes. Interestingly, nicorandil did not interfere with cytotoxic effect of doxorubicin against the growth of solid Ehrlich carcinoma. In conclusion, nicorandil was effective against the development of doxorubicin-induced heart failure in rats as indicated by improvement of hemodynamic perturbations, mitochondrial dysfunction and ultrastructural changes without affecting its antitumor activity. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Carcinoma, Ehrlich Tumor; Cardiotonic Agents; Caspase 3; Cytochromes c; DNA Fragmentation; Doxorubicin; Heart Failure; Heart Rate; Male; Mice; Mitochondria; Myocardium; Nicorandil; Oxidative Phosphorylation; Rats; Rats, Wistar | 2013 |
Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection.
HF (heart failure) after MI (myocardial infarction) is a major cause of morbidity and mortality worldwide. Recent studies have shown that hydrogen sulfide (H2S) has cardioprotective effects. Hence, we aimed to elucidate the potential effects of H2S on HF after MI in rats. The HF model after MI was made by ligating the left anterior descending coronary artery. HF groups and sham-operated groups of rats were treated with vehicle, sodium hydrosulfide (NaHS) or PAG (propagylglycine). Equal volumes of saline, 3.136 mg · kg-1 · day-1 NaHS or 37.5 mg · kg-1 · day-1 PAG, were intraperitoneally injected into rats for 6 weeks after operation. Survival, lung-to-body weight ratio and left ventricular haemodynamic parameters were measured. The protein and gene expression of Bcl-2, Bax, caspase 3 and cytochrome c were analysed by Western blotting and RT-PCR (reverse transcription-PCR). TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) and EM (electron microscopy) were used to examine apoptosis of heart tissues. NaHS was found to improve the survival and lower the lung-to-body weight ratio. It increased the LVSP (left ventricular systolic pressure) and the maximum rate of pressure and decreased LVEDP (left ventricular end-diastolic pressure). Furthermore, NaHS promoted Bcl-2 protein and mRNA expression and demoted Bax, caspase 3 protein and mRNA expression in HF rats. We also showed that NaHS decreased the leakage of cytochrome c protein from the mitochondria to the cytoplasm. Histological observation by TUNEL and EM proved that NaHS inhibited cardiac apoptosis in HF hearts and improved mitochondrial derangements, but that PAG aggravated those indices. Hence, H2S has protective effects in HF rats. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Blood Pressure; Cardiotonic Agents; Caspase 3; Cytochromes c; Disease Models, Animal; Gene Expression; Genes, bcl-2; Heart Failure; Heart Ventricles; Hydrogen Sulfide; Male; Mitochondria, Heart; Mitochondrial Proteins; Myocardial Infarction; Rats; Sulfides; Ventricular Function, Left | 2011 |
TVP1022 attenuates cardiac remodeling and kidney dysfunction in experimental volume overload-induced congestive heart failure.
Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats.. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction.. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state. Topics: Animals; Cardiotonic Agents; Caspase 3; Cytochromes c; Disease Models, Animal; Fibrosis; Glomerular Filtration Rate; Heart Failure; Hypertrophy; Indans; Kidney; Myocytes, Cardiac; Natriuretic Peptide, Brain; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Ventricular Remodeling | 2011 |
Mitochondrial OPA1, apoptosis, and heart failure.
Mitochondrial fusion and fission are essential processes for preservation of normal mitochondrial function. We hypothesized that fusion proteins would be decreased in heart failure (HF), as the mitochondria in HF have been reported to be small and dysfunctional.. Expression of optic atrophy 1 (OPA1), a mitochondrial fusion protein, was decreased in both human and rat HF, as observed by western blotting. OPA1 is important for maintaining normal cristae structure and function, for preserving the inner membrane structure and for protecting cells from apoptosis. Confocal and electron microscopy studies demonstrated that the mitochondria in the failing hearts were small and fragmented, consistent with decreased fusion. OPA1 mRNA levels did not differ between failing and normal hearts, suggesting post-transcriptional control. Simulated ischaemia in the cardiac myogenic cell line H9c2 cells reduced OPA protein levels. Reduction of OPA1 expression with shRNA resulted in increased apoptosis and fragmentation of the mitochondria. Overexpression of OPA1 increased mitochondrial tubularity, but did not protect against simulated ischaemia-induced apoptosis. Cytochrome c release from the mitochondria was increased both with reduction in OPA1 and with overexpression of OPA1.. This is the first report, to our knowledge, of changes in mitochondrial fusion/fission proteins in cardiovascular disease. These changes have implications for mitochondrial function and apoptosis, contributing to the cell loss which is part of the downward progression of the failing heart. Topics: Animals; Apoptosis; Cell Line; Cyclosporine; Cytochromes c; GTP Phosphohydrolases; Heart Failure; Humans; Membrane Proteins; Membrane Transport Proteins; Mitochondria; Mitochondrial Membrane Transport Proteins; Mitochondrial Proteins; Myocardial Ischemia; Rats; RNA, Messenger | 2009 |
Distinct cardiodynamic and molecular characteristics during early and late stages of sepsis-induced myocardial dysfunction.
We hypothesized that progressive decline in myocardial performance would correlate with upregulation of markers for apoptotic mechanisms following increased duration of polymicrobial sepsis in the rat. Male Sprague-Dawley rats (350-400 g) were randomized into sham, 1-, 3- and 7-day sepsis groups. Each septic rat received 200 mg/kg cecal inoculum intraperitoneally (i.p). The post-mortem analysis showed a severely inflamed peritoneum with the presence of pus in all septic animals that was directly proportional to the duration of sepsis. We observed 10, 33 and 42% mortality in the 1-, 3- and 7-day sepsis groups, respectively. Septic animals at 3 and 7 days exhibited an increased wet lung/total body weight and heart weight/total body weight. A significant increase in total cardiac troponin I (cTnI) and C Reactive Protein (CRP) and endothelin-1 (ET-1) was also observed with an increased duration of sepsis. Myocardial ET-1 concentration in the 7-day post-sepsis group was significantly elevated compared to the sham and 1-day post-sepsis groups. Sepsis also produced a significant decrease in the mean arterial pressure in the 7-day post-sepsis group and tachycardia in the 1-, 3-, and 7-day post-sepsis groups compared to the sham group. A significant prolongation of the left ventricular isovolumic relaxation rate constant, tau, and left ventricular end-diastolic pressure in the 1-, 3- and 7-day post-sepsis groups compared to the sham group was observed. In addition, a significant decrease in the rates of left ventricular relaxation (-dP/dt) and contraction (+dP/dt) in the 3- and 7-day post-sepsis groups compared to the sham and 1-day post-sepsis group was observed. Sepsis produced a significant upregulation in the expression of myocardial TRADD, cytosolic active caspase-3, the Bax/Bcl(2) ratio, and the mitochondrial release of cytochrome C in the 3- and 7-day post-sepsis groups. We observed a progressive increase in the number of TUNEL positive nuclei, cytosolic caspase-3 activation and co-localization of PARP in the nuclei at 1, 3 and 7 days post-sepsis. These data suggest that the progression of sepsis from 1 day to 3-7 days produce distinct cardiodynamic characteristics with a more profound effect during later stages. The sepsis-induced decline in myocardial performance correlates with the induction of myocardial apoptosis. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Biomarkers; C-Reactive Protein; Caspase 3; Cytochromes c; Disease Models, Animal; DNA Fragmentation; Endothelins; Heart Failure; Heart Rate; Hypotension; In Situ Nick-End Labeling; Male; Myocardium; p38 Mitogen-Activated Protein Kinases; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-bcl-2; Random Allocation; Rats; Rats, Sprague-Dawley; Sepsis; Suppuration; Survival Rate; Tachycardia; TNF Receptor-Associated Death Domain Protein; Troponin I; Ventricular Dysfunction | 2007 |
Cardiotoxicity of the cancer therapeutic agent imatinib mesylate.
Imatinib mesylate (Gleevec) is a small-molecule inhibitor of the fusion protein Bcr-Abl, the causal agent in chronic myelogenous leukemia. Here we report ten individuals who developed severe congestive heart failure while on imatinib and we show that imatinib-treated mice develop left ventricular contractile dysfunction. Transmission electron micrographs from humans and mice treated with imatinib show mitochondrial abnormalities and accumulation of membrane whorls in both vacuoles and the sarco- (endo-) plasmic reticulum, findings suggestive of a toxic myopathy. With imatinib treatment, cardiomyocytes in culture show activation of the endoplasmic reticulum (ER) stress response, collapse of the mitochondrial membrane potential, release of cytochrome c into the cytosol, reduction in cellular ATP content and cell death. Retroviral gene transfer of an imatinib-resistant mutant of c-Abl, alleviation of ER stress or inhibition of Jun amino-terminal kinases, which are activated as a consequence of ER stress, largely rescues cardiomyocytes from imatinib-induced death. Thus, cardiotoxicity is an unanticipated side effect of inhibition of c-Abl by imatinib. Topics: Adenosine Triphosphatases; Animals; Antineoplastic Agents; Benzamides; Calcium; Cell Death; Cell Membrane Permeability; Cells, Cultured; Cytochromes c; Dose-Response Relationship, Drug; Echocardiography; Heart Failure; Humans; Imatinib Mesylate; Injections, Intraperitoneal; Membrane Potentials; Mice; Mice, Inbred C57BL; Mitochondria, Heart; Mitochondrial Membranes; Myocytes, Cardiac; Piperazines; Pyrimidines; Sarcoplasmic Reticulum; Severity of Illness Index; Time Factors; Ventricular Dysfunction, Left | 2006 |
Dimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing hearts.
Congestive heart failure (CHF) is associated with impaired endothelium-dependent nitric oxide (NO)-mediated vasodilation (endothelial dysfunction). We hypothesized that coronary endothelial dysfunction in CHF may be due in part to decreased dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades endogenous inhibitors of NO synthase (NOS), including asymmetric dimethylarginine. Coronary blood flow and the endothelium-dependent vasodilator response to acetylcholine were studied in dogs in which CHF was produced by rapid ventricular pacing for 4 wk. Coronary flow and myocardial O2 consumption at rest and during treadmill exercise were decreased after development of CHF, and the vasodilator response to intracoronary acetylcholine (75 microg/min) was decreased by 39 +/- 5%. DDAH activity and DDAH isoform 2 (DDAH-2) protein content were decreased by 53 +/- 13% and 58 +/- 14%, respectively, in hearts with CHF, whereas endothelial NOS and DDAH isoform 1 (DDAH-1) were increased. Caveolin-1 and protein arginine N-methyltransferase 1, the enzyme that produces asymmetric dimethylarginine, were unchanged. Immunohistochemical staining showed DDAH-1 strongly expressed in coronary endothelium and smooth muscle and in the sarcolemma of cardiac myocytes. In cultured human endothelial cells, DDAH-1 was uniformly distributed in the cytosol and nucleus, whereas DDAH-2 was found only in the cytosol. Decreased DDAH activity and DDAH-2 protein expression may cause accumulation of endogenous inhibitors of endothelial NOS, thereby contributing to endothelial dysfunction in the failing heart. Topics: Amidohydrolases; Animals; Arginine; Blotting, Western; Cytochromes c; Dogs; Endothelium, Vascular; Heart Failure; Hemodynamics; Immunohistochemistry; Isoenzymes; Myocardium; Oxygen Consumption; Physical Exertion; Rest; Reverse Transcriptase Polymerase Chain Reaction; Subcellular Fractions; Vasodilation | 2005 |
Skeletal muscle fibres synthesis in heart failure: role of PGC-1alpha, calcineurin and GH.
Patients with congestive heart failure (CHF) have decreased exercise capacity because of muscle fatigability. Symptoms are due to a specific myopathy with increased expression of fast type II fibres, fast MHCs and muscle atrophy. PGC-1alpha, a potent transcriptional coactivator for nuclear receptors, induces mitochondrial myogenesis and the preferential synthesis of slow fibres. IGF1-Calcineurin stimulation can lead to increased expression of PGC-1alpha.. We investigated the levels of PGC-1alpha during progression and regression of skeletal myopathy in the soleus muscle of rats with right heart failure secondary to monocrotaline-induced pulmonary hypertension. We used GH to stimulate the IGF1-calcineurin-PGC-1alpha axis.. The slow MHC1 decreased from 90.6+/-0.5 to 71.7+/-2.2 in the CHF rats (p<0.00001) and increased to 82.1+/-1.8 after GH (p<0.00002). Western blot analysis showed that PGC-1alpha is significantly decreased in CHF, while it came back to control values after GH. Cytochrome c was decreased in CHF and returned to control values with GH. Troponin I was expressed solely as slow isoform in the control soleus, while the fast isoform appeared in CHF. Its expression returned to control values after GH.. We conclude that PGC-1alpha plays an important role in regulating slow fibres expression. PGC1-1alpha is in turn regulated by the IGF1-calcineurin axis. GH by increasing the circulating levels of IGF1, enhanced the expression of slow MHC1, TnI and the synthesis of mitochondria. Topics: Animals; Apoptosis; Blotting, Western; Calcineurin; Cytochromes c; Heart Failure; Heat-Shock Proteins; Human Growth Hormone; Hypertension, Pulmonary; Immunohistochemistry; Insulin-Like Growth Factor I; Male; Muscle Fibers, Skeletal; Muscle, Skeletal; Myosin Heavy Chains; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Protein Isoforms; Rats; Rats, Sprague-Dawley; Transcription Factors; Troponin I | 2005 |
Mitochondrial tolerance to stress impaired in failing heart.
Mitochondrial integrity is critical in the maintenance of bioenergetic homeostasis of the myocardium, with oxidative or metabolic challenge to mitochondria precipitating cell injury. In heart failure, where cardiac cells are exposed to elevated stress, mitochondrial vulnerability could contribute to the disease state. However, the mitochondrial response to stress is yet to be established in heart failure. Here, mitochondrial function and structure was evaluated prior and following stress using a transgenic (TG) model of heart failure, generated by cardiac overexpression of the cytokine TNFalpha. Compared to the wild type, mitochondria from TG failing hearts demonstrated impaired oxidative phosphorylation, mitochondrial DNA damage, reduced mitochondrial creatine kinase activity, abnormal calcium handling, and altered ultrastructure. Under anoxia/reoxygenation or calcium stress, mitochondria from failing hearts suffered exacerbated energetic failure with pronounced cytochrome c release. Thus, mitochondria from TNFalpha-TG failing hearts demonstrate structural and functional abnormalities, with reduced tolerance to stress manifested by impaired bioenergetics and increased susceptibility to injury. This abnormal vulnerability to stress underscores the impact of mitochondrial dysfunction in the pathobiology of heart failure. Topics: Animals; Calcium; Cell Hypoxia; Creatine Kinase; Cytochromes c; DNA Damage; Female; Heart Failure; Mice; Mice, Transgenic; Mitochondria, Heart; Oxidative Phosphorylation; Stress, Physiological; Tumor Necrosis Factor-alpha | 2003 |
[Cytochrome C in myocardial insufficiency].
Topics: Cytochromes; Cytochromes c; Heart Failure; Humans; Myocardium | 1954 |