cytochrome-c-t and Epilepsy

cytochrome-c-t has been researched along with Epilepsy* in 6 studies

Other Studies

6 other study(ies) available for cytochrome-c-t and Epilepsy

ArticleYear
Apoptosis in the Dentate Nucleus Following Kindling-induced Seizures in Rats.
    CNS & neurological disorders drug targets, 2022, Volume: 21, Issue:6

    Epilepsy is a common neurological disorder characterized by abnormal and recurrent neuronal discharges that result in epileptic seizures. The dentate nuclei of the cerebellum receive excitatory input from different brain regions. Purkinje cell loss due to chronic seizures could lead to decreased inhibition of these excitatory neurons, resulting in the activation of apoptotic cascades in the dentate nucleus.. The present study was designed to determine whether there is a presence of apoptosis (either intrinsic or extrinsic) in the dentate nucleus, the final relay of the cerebellar circuit, following kindling-induced seizures.. In order to determine this, seizures were triggered via the amygdaloid kindling model. Following 0, 15, or 45 stimuli, rats were sacrificed, and the cerebellum was extracted. It was posteriorly prepared for the immunohistochemical analysis with cell death biomarkers: TUNEL, Bcl-2, truncated Bid (tBid), Bax, cytochrome C, and cleaved caspase 3 (active form). Our findings reproduce results obtained in other parts of the cerebellum.. We found a decrease of Bcl-2 expression, an anti-apoptotic protein, in the dentate nucleus of kindled rats. We also determined the presence of TUNEL-positive neurons, which confirms the presence of apoptosis in the dentate nucleus. We observed the expression of tBid, Bax, as well as cytochrome C and cleaved caspase-3, the main executor caspase of apoptosis.. There is a clear activation of both the intrinsic and extrinsic apoptotic pathways in the cells of the dentate nucleus of the cerebellum of rats subjected to amygdaloid kindling.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; bcl-2-Associated X Protein; Cerebellar Nuclei; Cytochromes c; Epilepsy; Kindling, Neurologic; Proto-Oncogene Proteins c-bcl-2; Rats; Seizures

2022
Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures.
    Brain research, 2018, Jan-01, Volume: 1678

    Autophagy alterations have been observed in a variety of neurological disorders, however, very few studies have focused on autophagy alterations in epilepsy. The ketogenic diet (KD) likely ameliorates neuronal loss in several seizure models. However, whether this neuroprotective function occurs via starvation-induced autophagy and its prevalence in chronic kindled seizures remains unknown. The aim of this study was to determine the role of autophagy following seizure under KD, and the potential mechanism involved. Pentylenetetrazol (PTZ)-kindled rats, which were fed a Normal diet (ND) or KD, were pretreated with intraventricular infusions of saline, autophagy inducer rapamycin (RAP), or inhibitor 3-methyladenine (3-MA). KD alleviated seizure severity, decreased the number of Fluoro-jade B (FJB)-positive cells in the hippocampus of kindled rats. These effects were abolished by 3-MA pretreatment. RAP pretreatment did not affect seizure severity, but decreased the number of FJB-positive cells in ND group. KD decreased the percentage of damaged mitochondria in kindled group. Hippocampal Beclin-1 was increased by KD in vehicle group. The autophagy proteins Atg5, Beclin-1 and the ratio of microtubule-associated protein 1 light chain 3 (LC3) II to LC3-I in kindled KD-fed rats were higher, and the autophagy substrate P62 was lower than those in the kindled ND-fed rats, indicating an increase in autophagy following KD. Pretreatment with RAP increased the level of LC3-II/LC3-I, and pretreatment with 3-MA increased the level of P62 in KD-fed rats. To further clarify the mechanism of autophagy protection, the levels of key mitochondria related molecules were examed. The results showed that mitochondrial cytochrome c was up-regulated, cytosolic cytochrome c and the downstream cleaved caspase-3 was down-regulated in KD-fed rats, indicating a decrease in mitochondrial apoptosis. Taken together, our results indicated that KD activates autophagic pathways and reduces brain injury during PTZ-kindled seizures. The neuroprotective effect of KD is likely exerted via a reduction of mitochondrial cytochrome c release.

    Topics: Adenine; Animals; Apoptosis; Autophagy; Caspase 3; Cytochromes c; Diet, Ketogenic; Epilepsy; Hippocampus; Male; Mitochondria; Neurons; Neuroprotective Agents; Pentylenetetrazole; Rats; Rats, Sprague-Dawley; Seizures; Sirolimus

2018
MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells.
    Scientific reports, 2015, Jul-24, Volume: 5

    Adult neurogenesis continuously contributes new neurons to hippocampal circuits and the programmed death of a subset of immature cells provides a primary mechanism controlling this contribution. Epileptic seizures induce strong structural changes in the hippocampus, including the induction of adult neurogenesis, changes in gene expression and mitochondrial dysfunction, which may all contribute to epileptogenesis. However, a possible interplay between this factors remains largely unexplored. Here, we investigated gene expression changes in the hippocampal dentate gyrus shortly after prolonged seizures induced by kainic acid, focusing on mitochondrial functions. Using comparative proteomics, we identified networks of proteins differentially expressed shortly after seizure induction, including members of the BCL2 family and other mitochondrial proteins. Within these networks, we report for the first time that the atypical BCL2 protein BCL2L13 controls caspase-3 activity and cytochrome C release in neural stem/progenitor cells. Furthermore, we identify BCL2L13 as a novel target of the cooperative action of microRNA-124 and microRNA-137, both upregulated shortly after seizure induction. This cooperative microRNA-mediated fine-tuning of BCL2L13 expression controls casp3 activity, favoring non-apoptotic caspase-3 functions in NSPC exposed to KA and thereby may contribute to the early neurogenic response to epileptic seizures in the dentate gyrus.

    Topics: Animals; Caspase 3; Cytochromes c; Dentate Gyrus; Epilepsy; Excitatory Amino Acid Agonists; Gene Expression Profiling; Gene Expression Regulation; Gene Regulatory Networks; Kainic Acid; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Mitochondria; Neural Stem Cells; Neurogenesis; Protein Isoforms; Proto-Oncogene Proteins c-bcl-2; Signal Transduction

2015
Ketogenic diet reduces Smac/Diablo and cytochrome c release and attenuates neuronal death in a mouse model of limbic epilepsy.
    Brain research bulletin, 2012, Nov-01, Volume: 89, Issue:3-4

    The ketogenic diet (KD) is effective in the treatment of refractory epilepsy, yet the molecular mechanisms underlying its antiepileptic effects have not been determined. There is increasing evidence that neuronal cell death induced by seizures via mitochondrial pathway and seizures can lead to mitochondrial release of cytochrome c, and we have shown previously that translocation of Smac/DIABLO into the cytosol play a role in the brain damage in a model of limbic seizure. In the present study, we explored the neuroprotective effect of KD in C57BL/6 mice with seizures induced by kainic acid (KA). Status epilepticus triggered by intra-amygdaloid microinjection of KA lead to neuronal death in the selective ipsilateral CA3 subfield of the hippocampus and mitochondrial release of Smac/DIABLO and cytochrome c. We found that KD significantly decreased neuronal death in the ipsilateral CA3 at 24h after KA-induced seizures. Furthermore, KD reduced Smac/DIABLO and cytochrome c release from mitochondria, attenuated activation of casepase-9 and caspase-3 following seizures. These results demonstrate that the neuroprotective effect of KD against brain injury induced by limbic seizures, at least partially, is associated with inhibition of mitochondrial release of Smac/DIABLO and cytochrome c.

    Topics: 3-Hydroxybutyric Acid; Analysis of Variance; Animals; Apoptosis Regulatory Proteins; Carrier Proteins; Caspase 3; Caspase 9; Cell Death; Cytochromes c; Diet, Ketogenic; Disease Models, Animal; Electroencephalography; Epilepsy; Excitatory Amino Acid Agonists; In Situ Nick-End Labeling; Kainic Acid; Limbic System; Male; Mice; Mice, Inbred C57BL; Mitochondrial Proteins; Neurons

2012
Maternal epileptic seizure induced by pentylenetetrazol: apoptotic neurodegeneration and decreased GABAB1 receptor expression in prenatal rat brain.
    Molecular brain, 2009, Jun-22, Volume: 2

    Epilepsy is a prominent sign of neurological dysfunction in children with various fetal and maternal deficiencies. However, the detailed mechanism and influences underlying epileptic disorders are still unrevealed. The hippocampal neurons are vulnerable to epilepsy-induced pathologic changes and often manifests as neuronal death. The present study was designed to investigate the effect of maternal epileptic seizure on apoptotic neuronal death, modulation of GABAB1 receptor (R), and protein kinase A-alpha (PKA) in prenatal rat hippocampal neurons at gestational days (GD) 17.5. Seizure was induced in pregnant rat using intraperitoneal injection of pentylenetetrazol (PTZ) (40 mg/kg for 15 days). To confirm the seizure electroencephalography (EEG) data was obtained by the Laxtha EEG-monitoring device in the EEG recording room and EEG were monitored 5 min and 15 min after PTZ injection. The RT-PCR and Western blot results showed significant increased expression of cytochrome-c and caspases-3, while decreased levels of GABAB1R, and PKA protein expression upon ethanol, PTZ and ethanol plus PTZ exposure in primary neuronal cells cultured from PTZ-induced seizure model as compare to non-PTZ treated maternal group. Apoptotic neurodegeneration was further confirmed with Fluoro-Jade B and propidium iodide staining, where neurons were scattered and shrunken, with markedly condensed nuclei in PTZ treated group compared with control. This study for the first time indicate that PTZ-induced seizures triggered activation of caspases-3 to induce widespread apoptotic neuronal death and decreased GABAB1R expression in hippocampal neurons, providing a possible mechanistic link between maternal epilepsy induced neurodegeneration alteration of GABAB1R and PKA expression level during prenatal brain development. This revealed new aspects of PTZ and ethanol's modulation on GABAB1R, learning and memory. Further, explain the possibility that children delivered by epileptic mothers may have higher risk of developmental disturbances and malformations.

    Topics: Animals; Apoptosis; Brain; Caspase 3; Cyclic AMP-Dependent Protein Kinases; Cytochromes c; Electroencephalography; Epilepsy; Female; Fetus; Gene Expression Regulation, Developmental; Hippocampus; Maternal Exposure; Mitochondria; Nerve Degeneration; Neurons; Pentylenetetrazole; Pregnancy; Rats; Receptors, GABA-B; RNA, Messenger

2009
Death mechanisms in status epilepticus-generated neurons and effects of additional seizures on their survival.
    Neurobiology of disease, 2003, Volume: 14, Issue:3

    Status epilepticus (SE) increases neurogenesis in the subgranular zone (SGZ) of the adult dentate gyrus, but many of the newborn cells die, partly through caspase-induced apoptosis. Here we provide immunohistochemical evidence indicating that the caspase-evoked death of the new neurons involves the mitochondrial but not the death-receptor-mediated pathway. Cytochrome c released from mitochondria was found in a subset of progenitor cell progeny, while Fas ligand and tumor necrosis factor 1 receptor-associated domain as well as the mitochondria-related, caspase-independent apoptosis-inducing factor were not detected. We also show that additional seizures, induced at different stages during neuronal differentiation of progenitor cell progeny following SE, neither potentiate cell death mechanisms in the SGZ nor compromise the survival of the new cells. Thus, we found similar expression of cytochrome c, active caspase-3, caspase-cleaved PARP, and TUNEL/Hoechst-positive DNA fragmentation, as well as numbers of new cells in the SGZ in rats exposed to additional seizures at days 6 and 7 or days 33 and 34 following SE as in control animals only subjected to SE. We propose that the degree of survival of newly generated neurons is determined primarily by the initial SE insult and the ensuing pathology in the tissue environment, whereas spontaneous seizures play a minor role.

    Topics: Animals; Antigens, CD; Apoptosis; Caspases; Cell Differentiation; Cell Survival; Cytochromes c; Dentate Gyrus; Disease Models, Animal; Epilepsy; Fas Ligand Protein; Male; Membrane Glycoproteins; Mitochondria; Neurons; Rats; Rats, Sprague-Dawley; Receptors, Tumor Necrosis Factor; Receptors, Tumor Necrosis Factor, Type I; Signal Transduction; Status Epilepticus; Stem Cells

2003