cytochrome-c-t and Diabetes-Mellitus

cytochrome-c-t has been researched along with Diabetes-Mellitus* in 14 studies

Reviews

1 review(s) available for cytochrome-c-t and Diabetes-Mellitus

ArticleYear
Process, Outcomes and Possible Elimination of Aggregation with Special Reference to Heme Proteins; Likely Remediations of Proteinopathies.
    Current protein & peptide science, 2020, Volume: 21, Issue:6

    Protein folding is a natural phenomenon through which a linear polypeptide possessing necessary information attains three-dimension functionally active conformation. This is a complex and multistep process and therefore, the presence of several intermediary structures could be speculated as a result of protein folding. In in vivo, this folding process is governed by the assistance of other proteins called molecular chaperones and heat shock proteins. Due to the mechanism of protein folding, these intermediary structures remain major challenge for modern biology. Mutation in gene encoding amino acid can cause adverse environmental conditions which may result in misfolding of the linear polypeptide followed by the formation of aggregates and amyloidosis. Aggregation contributes to the pathophysiology of several maladies including diabetes mellitus, Huntington's and Alzheimer's disease. The propensity of native structure to form aggregated and fibrillar assemblies is a hallmark of amyloidosis. During aggregation of a protein, transition from α helix to β sheet is observed, and mainly β sheeted structure is visualised in a mature fibril. Heme proteins are very crucial for major life activities like transport of oxygen and carbon dioxide, synthesis of ATP, role in electron transport chain, and detoxification of free radicals formed during biochemical reactions. Any structural variation in the heme proteins may lead to a fatal response. Hence characterization of the folding intermediates becomes crucial. The characterization has been deciphered with the help of strong denaturants like acetonitrile and TFE. Moreover, possible role of elimination of these aggregates and prevention of protein denaturation is also discussed. Current review deals with the basic process and mechanism of the protein folding in general and the ultimate outcomes of the protein misfolding. Since Native conformation of heme proteins is essential for some vital activities as listed above, we have discussed possible prevention of denaturation and aggregation of heme proteins such as Hb, cyt c, catalase & peroxidase.

    Topics: Alzheimer Disease; Amyloid; Amyloidosis; Catalase; Cytochromes c; Diabetes Mellitus; Gene Expression; Heat-Shock Proteins; Hemoglobins; Humans; Huntington Disease; Molecular Chaperones; Peroxidase; Protein Aggregates; Protein Conformation; Protein Folding

2020

Other Studies

13 other study(ies) available for cytochrome-c-t and Diabetes-Mellitus

ArticleYear
Rolipram and pentoxifylline combination ameliorates the morphological abnormalities of dorsal root ganglion neurons in experimental diabetic neuropathy by reducing mitochondrial dysfunction and apoptosis.
    Journal of biochemical and molecular toxicology, 2023, Volume: 37, Issue:11

    Diabetic neuropathy (DN) is the most prevalent complication of diabetes. Pharmacological treatments for DN are often limited in efficacy, so the development of new agents to alleviate DN is essential. The aim of this study was to evaluate the effects of rolipram, a selective phosphodiesterase-4 inhibitor (PDE-4I), and pentoxifylline, a general PDE inhibitor, using a rat model of DN. In this study, a diabetic rat model was established by i.p. injection of STZ (55 mg/kg). Rats were treated with rolipram (1 mg/kg), pentoxifylline (100 mg/kg), and combination of rolipram (0.5 mg/kg) and pentoxifylline (50 mg/kg), orally for 5 weeks. After treatments, sensory function was assessed by hot plate test. Then rats were anesthetized and dorsal root ganglion (DRG) neurons isolated. Cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP, adenosine diphosphate and mitochondrial membrane potential (MMP) levels, Cytochrome c release, Bax, Bcl-2, caspase-3 proteins expression in DRG neurons were assessed by biochemical and ELISA methods, and western blot analysis. DRG neurons were histologically examined using hematoxylin and eosin (H&E) staining method. Rolipram and/or pentoxifylline significantly attenuated sensory dysfunction by modulating nociceptive threshold. Rolipram and/or pentoxifylline treatment dramatically increased the cAMP level, prevented mitochondrial dysfunction, apoptosis and degeneration of DRG neurons, which appears to be mediated by inducing ATP and MMP, improving cytochrome c release, as well as regulating the expression of Bax, Bcl-2, and caspase-3 proteins, and improving morphological abnormalities of DRG neurons. We found maximum effectiveness with rolipram and pentoxifylline combination on mentioned factors. These findings encourage the use of rolipram and pentoxifylline combination as a novel experimental evidence for further clinical investigations in the treatment of DN.

    Topics: Adenosine Triphosphate; Animals; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cytochromes c; Diabetes Mellitus; Diabetic Neuropathies; Ganglia, Spinal; Mitochondria; Neurons; Pentoxifylline; Phosphodiesterase Inhibitors; Rats; Rolipram

2023
Neuroprotective effect of Morin via TrkB/Akt pathway against diabetes mediated oxidative stress and apoptosis in neuronal cells.
    Toxicology mechanisms and methods, 2022, Volume: 32, Issue:9

    Long-term diabetes mellitus results in neuronal damage by increased intracellular glucose leading to oxidative stress. This condition is known as diabetic encephalopathy. Morin is a bioflavonoid, has significant antidiabetic, antioxidant and anti-inflammatory activities. The present study investigated whether the antioxidant properties of morin has beneficial effects on structural brain damage, neuronal apoptosis and dysregulation of TrkB/Akt signaling associated with diabetes. Adult male Sprague Dawley rats were induced diabetes by an intraperitoneal injection of 40 mg/kg of streptozotocin and kept untreated for 30 days to induce DE. Cognitive performance was assessed using the Morris water maze test followed by morin and metformin administration at the doses of 50 and 100 mg/kg, respectively, for 60 days. After 60 days of treatment, animals were subjected to the behavioral test and sacrificed to collect blood and brain and checked biochemical parameters. The treatment with morin could significantly reduce the escape latency time in Morris water maze test, blood glucose level, HbA1c, toxicity markers, lipid peroxidation products and protein carbonyl content, downregulated the expression of Bax, Caspase - 3 and Cytochrome C and upregulated Bcl-2, Bcl-XL, Akt, BDNF and TrkB expressions. Besides, enhanced the activities of antioxidant enzymes, and plasma insulin level. Histomorphological observations also confirmed the protective effect of morin on neuronal degeneration. Morin 50 mg once daily for 60 days was the most effective dose with a significant reduction in diabetes mediated complications in the brain associated with neuronal apoptosis and dysregulation of TrkB/Akt signaling.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; bcl-2-Associated X Protein; Blood Glucose; Brain-Derived Neurotrophic Factor; Cytochromes c; Diabetes Mellitus; Flavones; Flavonoids; Glycated Hemoglobin; Hypoglycemic Agents; Insulins; Male; Metformin; Neuroprotective Agents; Oxidative Stress; Protein Carbonylation; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Streptozocin

2022
Phyto-chlorophyllin Prevents Food Additive Induced Genotoxicity and Mitochondrial Dysfunction via Cytochrome c Mediated Pathway in Mice Model.
    Combinatorial chemistry & high throughput screening, 2021, Volume: 24, Issue:10

    The issue of food-additive-toxicity causing several health hazards needs to be therapeutically managed with an immediate effect. Alloxan, a food additive, is used for whitening and shining flour. It is capable of inducing genotoxicity, diabetes, and associated mitochondrial dysfunction. Therefore, to explore a non-toxic, phyto-based compound that can delay the onset of diabetes and prevent the multitude of damage associated, Chlorophyllin (CHL) was selected for our study, having been reported to exhibit anti-cancer, anti-diabetes, and antiinflammatory responses. Therefore, the objective of the present study is to evaluate the protective role of CHL in controlling genotoxicity, glucose imbalance, and associated cytochrome c mediated mitochondrial signaling dysfunction against food-additive-induced genotoxicity, diabetic state, and its complexities in mice model in vivo.. Mice were pre-treated with CHL through oral gavage before they were exposed to alloxan. Diabetic markers, anti-oxidant enzyme profile, chromosomal study, mitochondrial functioning factors, and expression of proteins were checked against food-additive injected mice.. The results revealed that CHL pre-treatment could delay the onset of diabetes, restrict alloxan-induced elevation of blood glucose, reduce DNA-damage and chromosomal aberration, optimize enzymatic profile (glucokinase, pyruvate, insulin), and modulates protein expression (insulin, IRS1, IRS2, GLUT2). Further, CHL-pre-treatment could stabilize mitochondrial-membrane-potential, intracellular calcium ion, ATP/ADP ratio, ATPase activity, thereby maintaining optimum functioning of cytochrome-c, bcl2, and caspase3 mitochondrial protein.. Therefore, the present study reports, for the first time, the screening of phytobased bioactive CHL for preventing/limiting the extent of food-additive-induced genotoxicity and mitochondrial dysfunction and serves as an advanced therapeutic tool in the management of diabetes.

    Topics: Administration, Oral; Alloxan; Animals; Chlorophyllides; Cytochromes c; Cytogenetic Analysis; Diabetes Mellitus; Disease Models, Animal; Food Additives; Mice; Mitochondria; Molecular Structure; Phytochemicals

2021
Mitochondria-Mediated Apoptosis Induced Testicular Dysfunction in Diabetic Rats: Ameliorative Effect of Resveratrol.
    Endocrinology, 2021, 04-01, Volume: 162, Issue:4

    The molecular mechanism underlying diabetes-induced testicular damage has not been thoroughly elucidated. The present study was conducted to elucidate the role of mitochondria-mediated apoptosis in diabetes-induced testicular dysfunction in rats and to explore the ameliorative effect of resveratrol. Diabetes suppressed sperm count, motility, and viability and increased sperm abnormalities. It decreased serum testosterone level and testicular mitochondrial membrane potential. The level of Bax and caspase-3 and -9 activities were increased in the testicular cytosol, while the level of Bcl-2 was decreased. Diabetes increased the Bax/Bcl-2 ratio. The cytochrome C level was decreased in the mitochondrial fraction, while its level was increased in the cytosol, a result that was supported by the immunohistochemistry of cytochrome C. Diabetes resulted in deleterious alterations in the architecture of testicular tissue, suppressed antioxidant enzymes, and increased H2O2 production, protein carbonyl content, and lipid peroxidation. However, administration of resveratrol at a dose of 50 mg kg/day for 4 successive weeks post diabetic induction, successfully ameliorated the testicular dysfunction. In conclusion, these findings strongly reveal that diabetes induces testicular damage, at least in part, by inducing mitochondrial-mediated apoptosis and oxidative stress. Administration of resveratrol to diabetic rats improves the diabetes-induced testicular damage. These impacts could be mediated through resveratrol antioxidant and anti-apoptotic effects.

    Topics: Animals; Apoptosis; Caspase 3; Caspase 9; Cytochromes c; Diabetes Mellitus; Humans; Hydrogen Peroxide; Male; Mitochondria; Oxidative Stress; Rats; Rats, Wistar; Resveratrol; Sperm Count; Spermatozoa; Testis

2021
Mitochondrial bound hexokinase type I in normal and streptozotocin diabetic rat retina.
    Mitochondrion, 2020, Volume: 52

    Diabetic retinopathy is thought to be trigger by glucose- induced oxidative stress which leads to an increase of the mitochondrial permeability through opening the permeability transition pore (MTP). In several cell types, hexokinases interact with the mitochondria regulating MTP opening, avoiding cytochrome c release. We studied HK I mitochondrial proportion in control and streptozotocin-induced diabetic rat retinas. In the normal retina, 50% of HK I was linked to mitochondria, proportion that did not change up to 60 days of diabetes. Mitochondria from normal and diabetic rat retinas showed a limited swelling, and similar cytochrome c levels. G-6-P and glycogen content increased 3-6-fold in diabetic rat retinas, while lactate content did not vary. Results suggest that mitochondrial bound HK produce G-6-P and drove it to glycogen synthesis, controlling ROS production and lactate toxicity.

    Topics: Animals; Cytochromes c; Diabetes Mellitus; Diabetic Retinopathy; Disease Models, Animal; Female; Glucose-6-Phosphate; Hexokinase; Mitochondria; Rats; Retina; Streptozocin

2020
Association study of apoptosis gene polymorphisms in mitochondrial diabetes: A potential role in the pathogenicity of MD.
    Gene, 2018, Jan-10, Volume: 639

    Mitochondrial diabetes (MD) is a heterogeneous disorder characterized by a chronic hyperglycemia and is maternally transmitted. Syndromic MD is a subgroup of MD including diabetic microangiopathy and macroangiopathy, in addition to extrapancreatic disorder. MD is caused by genetic mutations and deletions affecting mitochondrial DNA. This mitochondrial damage initiates apoptosis. In this study, we hypothesized that functional polymorphisms in genes involved in apoptotic pathway could be associated with the development of apoptosis in MD disease and increased its risk. Detection of apoptosis was confirmed on muscle biopsies taken from MD patients using the TUNEL method and the Cytochrome c protein expression level. We genotyped then 11 published SNPs from intrinsic and extrinsic apoptotic pathway and assessed the signification of these polymorphisms in 43 MD patients and 100 healthy controls. We found 10 selected polymorphisms (p53 (rs1042522 and rs17878362), BCL2 (rs2279115), BAX (rs1805419), BAK1 (rs210132 and rs2227925), CASP3 (rs1405937), CASP7 (rs2227310), CASP8 (rs1045485) and CASP10 (rs13006529)) with a potential apoptosis effect in MD patients compared to control population. Specifically, SNPs involved in the intrinsic pathway (p53, BCL2, BAK1 and CASP3) presented the highest risk of apoptosis. Our result proved that apoptosis initiated by mtDNA mutations, can be emphasized by a functional apoptotic polymorphisms associated with high expression of cytochrome c protein and more myofibers with apoptosis in syndromic MD subgroup compared with non-syndromic MD subgroup.

    Topics: Adult; Apoptosis; Case-Control Studies; Cytochromes c; Diabetes Mellitus; Female; Genome-Wide Association Study; Humans; Linkage Disequilibrium; Male; Mitochondrial Diseases; Polymorphism, Single Nucleotide

2018
High glucose-induced excessive reactive oxygen species promote apoptosis through mitochondrial damage in rat cartilage endplate cells.
    Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 2018, Volume: 36, Issue:9

    Diabetes mellitus (DM) is an important factor in intervertebral disc degeneration (IDD). Apoptosis of cartilage endplate (CEP) cells is one of the initiators of IDD. However, the effects of high glucose on CEP cells are still unknown. Therefore, we conducted the present study to evaluate the effects of high glucose on CEP cells and to identify the mechanisms of those effects. Rat CEP cells were isolated and cultured in 10% foetal bovine serum (FBS, normal control) or high-glucose medium (10% FBS + 0.1 M glucose or 10% FBS + 0.2 M glucose, experimental conditions) for 1 or 3 days. In addition, CEP cells were treated with 0.2 M glucose for 3 days in the presence or absence of alpha-lipoic acid (ALA, 0.15 M). Flow cytometry was performed to identify and quantify the degree of apoptosis. The expression of reactive oxygen species (ROS) was assessed by flow cytometry, and mitochondrial damage (mitochondrial membrane potential) was assessed by fluorescence microscopy. Furthermore, the expression levels of cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, and cytochrome c were evaluated by Western blotting. High glucose significantly increased apoptosis and ROS accumulation in CEP cells in a dose- and time-dependent manner. Meanwhile, a disrupted mitochondrial membrane potential was detected in rat CEP cells cultured in the two high glucose concentrations. Incubating in high glucose enhanced the expression levels of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but decreased the level of the anti-apoptotic protein Bcl-2. ALA inhibited the expression of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but enhanced the expression of Bcl-2. ALA also prevented disruption of the mitochondrial membrane potential in CEP cells. This study demonstrates that high glucose-induced excessive reactive oxygen species promote mitochondrial damage, thus causing apoptosis in rat CEP cells in a dose- and time-dependent manner. ALA could prevent mitochondrial damage and apoptosis caused by high glucose in CEP cells. The results suggest that appropriate blood glucose control may be the key to preventing IDD in diabetic patients. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2476-2483, 2018.

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Cartilage; Caspase 3; Caspase 9; Cytochromes c; Diabetes Complications; Diabetes Mellitus; Glucose; Intervertebral Disc Degeneration; Male; Membrane Potential, Mitochondrial; Mitochondria; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species

2018
Toxicity of Atorvastatin on Pancreas Mitochondria: A Justification for Increased Risk of Diabetes Mellitus.
    Basic & clinical pharmacology & toxicology, 2017, Volume: 120, Issue:2

    Statins (including atorvastatin) are a widely used class of drugs, and like all medications, they have a potential for adverse effects. Recently, it has been shown that statins also exert side effects on the pancreas. In vitro studies have suggested that this class of drugs induced a reduction in insulin secretion. Also, the use of statins is associated with a raised risk of diabetes mellitus (DM), but the mechanisms underlying statin-induced diabetes are poorly known. Literature data indicate that several statins are able to induce apoptosis signalling. This study was designed to examine the mechanism of atorvastatin on mitochondria obtained from rat pancreas. In our study, mitochondria were obtained from the pancreas and then exposed to atorvastatin and vehicle to investigate probable toxic effects. The results showed that atorvastatin (25, 50, 75, 100 and 125 μM) increased reactive oxygen species (ROS) production, mitochondrial swelling, collapse of mitochondrial membrane potential and cytochrome c release, the orchestrating factor for mitochondria-mediated apoptosis signalling. Atorvastatin also reduced the ATP levels. These results propose that the toxicity of atorvastatin on pancreas mitochondria is a key point for drug-induced apoptotic cell loss in the pancreas and therefore a justification for increased risk of DM.

    Topics: Adenosine Triphosphate; Animals; Apoptosis; Atorvastatin; Cytochromes c; Diabetes Mellitus; Dose-Response Relationship, Drug; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Male; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Swelling; Oxidative Stress; Pancreas; Rats, Sprague-Dawley; Reactive Oxygen Species; Risk Assessment; Signal Transduction; Time Factors

2017
Sirt 1 activator inhibits the AGE-induced apoptosis and p53 acetylation in human vascular endothelial cells.
    The Journal of toxicological sciences, 2015, Volume: 40, Issue:5

    Advanced glycation end products (AGEs) by nonenzymatic glycation reactions are extremely accumulated in the diabetic vascular cells, neurons, and glia, and are confirmed to play important role in the pathogenesis of diabetes mellitus -induced cardiovascular complications. Sirt 1, known as mammalian sirtuin, has been recognized to regulate insulin secretion and protect cells against oxidative stress, which is promoted by the accumulated AGEs in cardiovascular cells. In the present study, we treated human endothelial Eahy926 cells with AGEs, and determined the apoptosis induction, caspase activation, the Sirt 1 activity, the expression and acetylation of p53. Then we manipulated Sirt 1 activity with a Sirt 1 activator, Resveratrol (RSV), and a Sirt 1 inhibitor, sirtinol, in the AGE-BSA-treated Eahy926 cells, and then re-evaluated the apoptosis induction, caspase activation, the expression and acetylation of p53. Results demonstrated that AGEs induced apoptosis in the human endothelial Eahy926 cells, by promoting the cytochrome c release, activation of caspase 9/3. Also, the AGE-BSA treatment promoted the total p53 level and acetylated (Ac) p53, but reduced the Sirt 1 level and activity. On the other hand, the Sirt 1 inhibitor/activator not only deteriorated/ameliorated the promotion to p53 level and Ac p53, but also aggravated/inhibited the AGE-induced apoptosis and the promotion to apoptosis-associated signaling molecules. In conclusion, the present study confirmed the apoptosis promotion by AGEs in endothelial Eahy926 cells, by regulating the Sirt 1 activity and p53 signaling, it also implies the protective role of Sirt 1 activator against the AGE-induced apoptosis.

    Topics: Acetylation; Apoptosis; Benzamides; Cardiovascular Diseases; Caspases; Cells, Cultured; Cytochromes c; Diabetes Mellitus; Endothelial Cells; Glycation End Products, Advanced; Humans; Insulin; Insulin Secretion; Naphthols; Oxidative Stress; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Tumor Suppressor Protein p53

2015
Etomidate deteriorates the toxicity of advanced glycation end products to human endothelial Eahy926 cells.
    The Journal of toxicological sciences, 2014, Volume: 39, Issue:6

    Patients with diabetes mellitus, particularly those with cardiovascular complications, have increased risk of mortality when subject to anesthetics and surgery, compared with non-diabetic patients. Anesthetics may exert pressure on the cardiovascular system of diabetic patients, directly or by aggravating pre-existing cardiovascular complications. Advanced glycation end products (AGEs) are extremely accumulated in diabetes mellitus, and are confirmed to play an important role in the pathogenesis of diabetic microvascular and macrovascular complications. The purpose of the present study was to investigate the regulatory role of etomidate, which is widely used as intravenous general anesthetics, on the viability and apoptosis of human endothelial Eahy926 cells, in the presence of AGEs. The results demonstrated that etomidate and Glu-BSA (one type of AGE) synergistically reduced the human endothelial Eahy926 cell viability and induced cell apoptosis. In addition, western blot assay of apoptosis-associated molecules indicated that both agents synergistically upregulated the cytochrome c release, activated the apoptosis executor, caspase 3, and promoted the poly-ADP-ribose polymerase (PARP) lysis. Further results confirmed that the two agents synergistically promoted oxidative stress by decreasing mitochondrial respiratory chain complex IV and mitochondrial membrane potential (MMP), while upregulating reactive oxygen species (ROS) and mitochondrial superoxide. In conclusion, the results presented in this study offer a novel insight into the mechanisms of endothelial cell apoptosis in response to etomidate in the presence of AGEs. These results suggest that oxidative stress has important role in the synergistic promotion of apoptosis by etomidate and AGEs in endothelial Eahy926 cells.

    Topics: Anesthetics, Intravenous; Apoptosis; Caspase 3; Cell Survival; Cells, Cultured; Cytochromes c; Diabetes Mellitus; Diabetic Angiopathies; Drug Synergism; Endothelial Cells; Etomidate; Glycation End Products, Advanced; Humans; Mitochondrial Diseases; Oxidative Stress; Poly(ADP-ribose) Polymerases

2014
Hyperglycemia induces apoptosis in rat liver through the increase of hydroxyl radical: new insights into the insulin effect.
    The Journal of endocrinology, 2010, Volume: 205, Issue:2

    In this study, we analyzed the contribution of hydroxyl radical in the liver apoptosis mediated by hyperglycemia through the Bax-caspase pathway and the effects of insulin protection against the apoptosis induced by hyperglycemia. Male adult Wistar rats were randomized in three groups: control (C) (sodium citrate buffer, i.p.), streptozotocin (STZ)-induced diabetic (SID) (STZ 60 mg/kg body weight, i.p.), and insulin-treated SID (SID+I; 15 days post STZ injection, SID received insulin s.c., twice a day, 15 days). Rats were autopsied on day 30. In liver tissue, diabetes promoted a significant increase in hydroxyl radical production which correlated with lipid peroxidation (LPO) levels. Besides, hyperglycemia significantly increased mitochondrial BAX protein expression, cytosolic cytochrome c levels, and caspase-3 activity leading to an increase in apoptotic index. Interestingly, the treatment of diabetic rats with desferoxamine or tempol (antioxidants/hydroxyl radical scavengers) significantly attenuated the increase in both hydroxyl radical production and in LPO produced by hyperglycemia, preventing apoptosis by reduction of mitochondrial BAX and cytosolic cytochrome c levels. Insulin treatment showed similar results. The finding that co-administration of antioxidants/hydroxyl radical scavengers together with insulin did not provide any additional benefit compared with those obtained using either inhibitors or insulin alone shows that it is likely that insulin prevents oxidative stress by reducing the effects of hydroxyl radicals. Importantly, insulin significantly increased apoptosis inhibitor protein expression by induction of its mRNA. Taken together, our studies support that, at least in part, the hydroxyl radical acts as a reactive intermediate, which leads to liver apoptosis in a model of STZ-mediated hyperglycemia. A new anti-apoptosis signal for insulin is shown, given by an increase of apoptosis inhibitor protein.

    Topics: Animals; Apoptosis; Caspase 3; Cytochromes c; Diabetes Mellitus; Disease Models, Animal; Gene Expression Regulation; Humans; Hydroxyl Radical; Hyperglycemia; Insulin; Liver; Male; Random Allocation; Rats; Rats, Wistar

2010
Plasma membrane Ca2+-ATPase overexpression depletes both mitochondrial and endoplasmic reticulum Ca2+ stores and triggers apoptosis in insulin-secreting BRIN-BD11 cells.
    The Journal of biological chemistry, 2010, Oct-01, Volume: 285, Issue:40

    Ca(2+) may trigger apoptosis in β-cells. Hence, the control of intracellular Ca(2+) may represent a potential approach to prevent β-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca(2+)-ATPase (PMCA) overexpression on Ca(2+)-regulated apoptosis in clonal β-cells. Clonal β-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca(2+)] using a combination of aequorins with different Ca(2+) affinities and on the ER and mitochondrial pathways of apoptosis. β-cell stimulation generated microdomains of high [Ca(2+)] in the cytosol and subcellular heterogeneities in [Ca(2+)] among mitochondria. Overexpression of PMCA decreased [Ca(2+)] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing β-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal β-cell stimulation generates microdomains of high [Ca(2+)] in the cytosol and subcellular heterogeneities in [Ca(2+)] among mitochondria. PMCA overexpression depletes intracellular [Ca(2+)] stores and, despite a decrease in mitochondrial [Ca(2+)], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca(2+) homeostasis that could decrease β-cell apoptosis in diabetes.

    Topics: Activating Transcription Factor 6; Aequorin; Animals; Apoptosis; bcl-2-Associated X Protein; Calcium; Cell Line; Cytochromes c; Diabetes Mellitus; Endoplasmic Reticulum; Heat-Shock Proteins; Insulin-Secreting Cells; Mitochondria; Mitochondrial Membranes; Permeability; Plasma Membrane Calcium-Transporting ATPases; Rats; Unfolded Protein Response

2010
Involvement of mtDNA damage in free fatty acid-induced apoptosis.
    Free radical biology & medicine, 2005, Mar-15, Volume: 38, Issue:6

    A growing body of evidence indicates that free fatty acids (FFA) can have deleterious effects on beta-cells. It has been suggested that the beta-cell dysfunction and death observed in diabetes may involve exaggerated activation of the inducible form of nitric oxide synthase (iNOS) by FFA, with the resultant generation of excess nitric oxide (NO). However, the cellular targets with which NO interact have not been fully identified. We hypothesized that one of these targets might be mitochondrial DNA (mtDNA). Therefore, experiments were initiated to evaluate damage to mtDNA caused by exposure of INS-1 cells to FFA (2/1 oleate/palmetate). The results showed that FFA caused a dose-dependent increase in mtDNA damage. Additionally, using ligation-mediated PCR, we were able to show that the DNA damage pattern at the nucleotide level was identical to the one induced by pure NO and different from damage caused by peroxynitrite or superoxide. Following exposure to FFA, apoptosis was detected by DAPI staining and cytochrome c release. Treatment of INS-1 cells with the iNOS inhibitor aminoguanidine protected these cells from mtDNA damage and diminished the appearance of apoptosis. These studies suggest that mtDNA may be a sensitive target for NO-induced toxicity which may provoke apoptosis in beta-cells following exposure to FFA.

    Topics: Adenosine Triphosphate; Animals; Apoptosis; Caspases; Cell Line, Tumor; Cytochromes c; Diabetes Mellitus; DNA Damage; DNA, Mitochondrial; Dose-Response Relationship, Drug; Fatty Acids; Fatty Acids, Nonesterified; Free Radicals; Glucose; Indoles; Mitochondria; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrites; Polymerase Chain Reaction; Rats; Time Factors

2005