cytochalasin-d and Skin-Neoplasms

cytochalasin-d has been researched along with Skin-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for cytochalasin-d and Skin-Neoplasms

ArticleYear
Cytochalasin D, LY294002 and olomoucine synergize in promoting death of melanoma cells through activation of caspase-3 and apoptosis.
    Melanoma research, 2010, Volume: 20, Issue:1

    Many of the current anticancer therapies rely on the induction of apoptosis, and several mechanisms that protect cells against apoptosis may be upregulated in tumors. A growing body of evidence suggests that single drugs with a clearly defined intracellular target may be less efficient in arresting tumor growth and induction of apoptosis than multitargeted strategies. To prove that this is also the case for melanoma, we studied five cell lines, which represent different stages of tumor progression. We tested cell viability, terminal dUTP nick-end labeling and activation of caspase-3 upon exposure to cytochalasin D, LY294002 and olomoucine, added either alone or in various combinations. The obtained data were compared with effects caused by staurosporine. The results show that whereas staurosporine efficiently induced apoptosis in all tested melanoma cell lines, the other drugs had only moderate effects when administered alone. In contrast, the combinations of drugs were more effective in inducing caspase-3 activity and reducing cell viability. In particular, the triple combination of cytochalasin D+LY294002+olomoucine was almost as effective as staurosporine in inducing caspase-3 activity and apoptosis. These results prove that it is possible to design new pharmacological strategies that will effectively induce caspase-3 activity and apoptosis in melanoma. The possible explanations of the observed synergy between the tested drugs are also discussed.

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Caspase 3; Cell Growth Processes; Cell Line, Tumor; Cell Survival; Chromones; Cytochalasin D; Drug Synergism; Enzyme Activation; Humans; In Situ Nick-End Labeling; Kinetin; Melanoma; Morpholines; Skin Neoplasms; Staurosporine; Up-Regulation

2010
Upregulation and redistribution of E-MAP-115 (epithelial microtubule-associated protein of 115 kDa) in terminally differentiating keratinocytes is coincident with the formation of intercellular contacts.
    The Journal of investigative dermatology, 1999, Volume: 112, Issue:2

    Microtubules are involved in the positioning and movement of organelles and vesicles and therefore play fundamental roles in cell polarization and differentiation. Their organization and properties are cell-type specific and are controlled by microtubule-associated proteins (MAP). E-MAP-115 (epithelial microtubule-associated protein of 115 kDa) has been identified as a microtubule-stabilizing protein predominantly expressed in epithelial cells. We have used human skin and primary keratinocytes as a model to assess a putative function of E-MAP-115 in stabilizing and reorganizing the microtubule network during epithelial cell differentiation. Immunolabeling of skin sections indicated that E-MAP-115 is predominantly expressed in the suprabasal layers of the normal epidermis and, in agreement with this observation, is relatively abundant in squamous cell carcinomas but barely detectable in basal cell carcinomas. In primary keratinocytes whose terminal differentiation was induced by increasing the Ca2+ concentration of the medium, E-MAP-115 expression significantly increased during the first day, as observed by northern and western blot analysis. Parallel immunofluorescence studies showed an early redistribution of E-MAP-115 from microtubules with a paranuclear localization to cortical microtubules organized in spike-like bundles facing intercellular contacts. This phenomenon is transient and can be reversed by Ca2+ depletion. Treatment of cells with cytoskeleton-active drugs after raising the Ca2+ concentration indicated that E-MAP-115 is associated with a subset of stable microtubules and that the cortical localization of these microtubules is dependent on other microtubules but not on strong interactions with the actin cytoskeleton or the plasma membrane. The mechanism whereby E-MAP-115 would redistribute to and stabilize cortical microtubules used for the polarized transport of vesicles towards the plasma membrane, where important reorganizations take place upon stratification, is discussed.

    Topics: Cytochalasin D; Humans; Intracellular Fluid; Keratinocytes; Microtubule-Associated Proteins; Skin Neoplasms; Up-Regulation

1999