cytochalasin-d has been researched along with Sarcoma-180* in 2 studies
2 other study(ies) available for cytochalasin-d and Sarcoma-180
Article | Year |
---|---|
cDNAs of cell adhesion molecules of different specificity induce changes in cell shape and border formation in cultured S180 cells.
The liver cell adhesion molecule (L-CAM) and N-cadherin or adherens junction-specific CAM (A-CAM) are structurally related cell surface glycoproteins that mediate calcium-dependent adhesion in different tissues. We have isolated and characterized a full-length cDNA clone for chicken N-cadherin and used this clone to transfect S180 mouse sarcoma cells that do not normally express N-cadherin. The transfected cells (S180cadN cells) expressed N-cadherin on their surfaces and resembled S180 cells transfected with L-CAM (S180L cells) in that at confluence they formed an epithelioid sheet and displayed a large increase in the number of adherens and gap junctions. In addition, N-cadherin in S180cadN cells, like L-CAM in S180L cells, accumulated at cellular boundaries where it was colocalized with cortical actin. In S180L cells and S180cadN cells, L-CAM and N-cadherin were seen at sites of adherens junctions but were not restricted to these areas. Adhesion mediated by either CAM was inhibited by treatment with cytochalasin D that disrupted the actin network of the transfected cells. Despite their known structural similarities, there was no evidence of interaction between L-CAM and N-cadherin. Doubly transfected cells (S180L/cadN) also formed epithelioid sheets. In these cells, both N-cadherin and L-CAM colocalized at areas of cell contact and the presence of antibodies to both CAMs was required to disrupt the sheets of cells. Studies using divalent antibodies to localize each CAM at the cell surface or to perturb their distributions indicated that in the same cell there were no interactions between L-CAM and N-cadherin molecules. These data suggest that the Ca(++)-dependent CAMs are likely to play a critical role in the maintenance of epithelial structures and support a model for the segregation of CAM mediated binding. They also provide further support for the so-called precedence hypothesis that proposes that expression and homophilic binding of CAMs are necessary for formation of junctional structures in epithelia. Topics: Animals; Cadherins; Calcium; Cell Adhesion; Cell Adhesion Molecules; Chick Embryo; Cytochalasin D; DNA; Fluorescent Antibody Technique; Gene Library; Intercellular Junctions; Mice; Microscopy, Electron; Restriction Mapping; Sarcoma 180; Transfection; Tumor Cells, Cultured | 1990 |
Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules (CAMs) expressed on cell surfaces.
Cell adhesion molecules (CAMs) are cell surface glycoproteins that may play a variety of roles in morphogenesis and histogenesis, particularly in defining borders of discrete cell populations. To examine the influence of CAM expression on such cell segregation events in vitro, we have transfected cells with cDNAs coding for two calcium-dependent CAMs of different specificity, the liver CAM (L-CAM) and the structurally related molecule N-cadherin. The cDNAs were introduced separately or together into murine sarcoma S180 cells, which normally do not express these molecules, to produce cell lines denoted S180L, S180cadN, and S180L/cadN, respectively. A number of cell lines of each type were produced that differed in their levels of CAM expression. In adhesion assays, S180L and S180cadN cells aggregated specifically via their respective CAMs, and S180L cells did not appear to adhere to S180cadN cells. Cells expressing high levels of each CAM aggregated more rapidly than cells expressing low levels. Segregation between two cell types occurred when they expressed CAMs of different specificity or different levels of the same CAM. S180L and S180cadN cells both sorted out from untransfected cells, and cells expressing high levels of either L-CAM or N-cadherin segregated from cells expressing low levels of the same CAM; in all cases segregation was inhibited by antibodies specific for the transfected CAM. S180L cells sorted out from S180cadN cells, but this segregation was inhibited only when antibodies to both CAMs were applied together. Doubly transfected S180L/cadN cells also sorted out from S180L cells and from S180cadN cells, and the process was inhibited by antibodies to the unshared CAM (N-cadherin or L-CAM, respectively). Cytochalasin D and nocodazole inhibited sorting-out, consistent with the probable role of microfilaments and microtubules in cell movement and in accord with evidence that the action of these CAMs depends on interactions with cortical cytoplasmic components. Using cDNAs for only two CAMs in these studies, we could distinguish at least eight cell lines by their behavior in sorting-out assays. This suggests that qualitative and quantitative differences in the expression in vivo of a relatively small number of CAMs can lead to a large variety of patterns among cell collectives and their borders during tissue formation. Topics: Animals; Antibodies, Monoclonal; Antigens, Surface; Benzimidazoles; Cell Adhesion; Cell Adhesion Molecules; Cell Aggregation; Cell Line; Chickens; Cytochalasin D; Cytochalasins; Mice; Nocodazole; Sarcoma 180; Transfection | 1989 |