cytochalasin-d has been researched along with Fish-Diseases* in 2 studies
2 other study(ies) available for cytochalasin-d and Fish-Diseases
Article | Year |
---|---|
In vitro markers for virulence in Yersinia ruckeri.
In this study, different traits that have been associated with bacterial virulence were studied in Yersinia ruckeri. Two isolates that had been shown to cause disease and mortality in experimentally infected rainbow trout were compared with five avirulent isolates. Both virulent isolates showed high adhesion to gill and intestinal mucus of rainbow trout, whereas the majority of non-virulent strains demonstrated significantly lower adhesion. A decrease in adherence capability following bacterial treatment with sodium metaperiodate and proteolytic enzymes suggested the involvement of carbohydrates and proteins. All strains were able to adhere to and invade chinook salmon embryo cell line (CHSE-214), fathead minnow epithelial cell line (FHM) and rainbow trout liver cell line (R1). One non-virulent strain was highly adhesive and invasive in the three cell lines, whereas the virulent strains showed moderate adhesive and invasive capacity. The internalization of several isolates was inhibited by colchicine and cytochalasin-D, suggesting that microtubules and microfilaments play a role. For all strains, intracellular survival assays showed a decrease of viable bacteria in the cells 6 h after inoculation, suggesting that Y. ruckeri is not able to multiply or survive inside cultured cells. Analysis of the susceptibility to the bactericidal effect of rainbow trout serum demonstrated that virulent Y. ruckeri strains were serum resistant, whereas non-virulent strains were generally serum sensitive. Topics: Animals; Bacterial Adhesion; Biomarkers; Carbohydrates; Cell Line; Colchicine; Cytochalasin D; Enzymes; Fish Diseases; Fishes; Gills; Intracellular Space; Microscopy, Electron, Scanning; Mitogens; Mucus; Nucleic Acid Synthesis Inhibitors; Oncorhynchus mykiss; Periodic Acid; Tubulin Modulators; Yersinia Infections; Yersinia ruckeri | 2010 |
Edwardsiella ictaluri invasion of IEC-6, Henle 407, fathead minnow and channel catfish enteric epithelial cells.
Invasion of Edwardsiella ictaluri into cultured mammalian, fish and enzymatically harvested catfish enteric epithelial cells is described. Gentamicin survival assays were used to demonstrate the ability of this catfish pathogen to invade IEC-6 (origin: rat small intestinal epithelium), Henle 407 (origin: human embryonic intestinal epithelium), fathead minnow (FHM, minnow epithelial cells) and trypsin/pepsin-harvested channel catfish enteric epithelial cells. Invasion of all cell types occurred within 2 h of contact at 26 degrees C, in contrast to Escherichia coli DH5 alpha, which did not invade cells tested. Eight Edwardsiella ictaluri isolates from diseased catfish and the ATCC (American Type Culture Collection) strain were evaluated for invasion efficiency using FHM cells. All isolates were invasive, but at differing efficiencies. Invasion blocking assays using chemical blocking agents were performed on a single isolate (LA 89-9) using IEC-6 epithelial cells. Preincubation of IEC-6 cells with cytochalasin D (microfilament depolymerizer) and monodansylcadaverine (blocks receptor-mediated endocytosis) significantly reduced invasion by E. ictaluri, whereas exposure to colchicine (microtubule depolymerizer) had no effect on bacterial internalization. Results indicate that actin polymerization and receptor-mediated endocytosis are involved in uptake of E. ictaluri by IEC-6 epithelial cells. Invasion trials using freshly harvested cells from the intestine of the natural host, Ictalurus punctatus, show that invasion occurs, but at a low efficiency. This is possibly due to loss of outer membrane receptors during enzymatic cell harvest. This study provides the first documentation of the invasion of cultured mammalian and fish cells by E. ictaluri, and identifies possible mechanisms used for intracellular access. Additionally, the study describes several functional in vitro invasion models using commercially available cell lines as well as cells from the natural host (channel catfish, I. punctatus). Topics: Animals; Bacterial Adhesion; Cadaverine; Catfishes; Cell Line; Colchicine; Cyprinidae; Cytochalasin D; Edwardsiella ictaluri; Endocytosis; Enterobacteriaceae Infections; Enzyme Inhibitors; Epithelial Cells; Fish Diseases; Humans; Intestinal Mucosa; Nucleic Acid Synthesis Inhibitors; Rats | 2002 |