cytochalasin-d has been researched along with Carcinoma--Non-Small-Cell-Lung* in 3 studies
3 other study(ies) available for cytochalasin-d and Carcinoma--Non-Small-Cell-Lung
Article | Year |
---|---|
Involvement of a p53-independent and post-transcriptional up-regulation for p21WAF/CIP1 following destabilization of the actin cytoskeleton.
The tumor suppressor p21WAF/CIP1 mediates the proliferation arrest via p53-dependent or -independent gene transactivation following distinct environmental stresses. In this study, we show that direct destabilization of the actin cytoskeleton by actin-targeting reagents leads to a p53-independent up-regulation of p21WAF/CIP1. The actin-targeting agent cytochalasin B (10 microM) quickly disrupted the actin cytoskeleton of p53 wild-type and p53-null cells accompanied by up-regulation of p21WAF/CIP1. Nevertheless, both total p53 and ser-15 phosphorylated p53 were not accumulated concomitantly, compared to the effect caused by ionizing irradiation. P53-independent up-regulation of p21WAF/CIP1 was also observed by two other actin-targeting agents cytochalasin D and latrunculin B, but not by the microtubule inhibitor colcemid. Furthermore, we showed that p21WAF/CIP1 mRNA level was not increased, whereas the protein degradation was delayed. A reduction of ubiquitination for p21WAF/CIP1 protein was detected using immunoprecipitation/immunoblot analysis. Up-regulation of p21WAF/CIP1 was not associated with cytotoxicity induced by cytochalasin B that influenced DNA integrity and plating efficiency only after 24 h of treatment. In addition, up-regulated p21WAF/CIP1 was accompanied by reduction of phosphorylation on retinoblastoma (Rb) protein in p53-null cells, implying that p21WAF/CIP1 might in part account for the molecular regulation of cytochalasin B induced G1 phase arrest. Together, current results suggest that p21WAF/CIP1 level can be mediated by actin organization in the absence of p53 via a post-transcriptional machinery, and it may contribute to the growth ablation by agents targeting the actin cytoskeleton. Topics: Actins; Adenocarcinoma; Bone Neoplasms; Bridged Bicyclo Compounds, Heterocyclic; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Tumor; Cyclin-Dependent Kinase Inhibitor p21; Cytochalasin D; Cytoskeleton; DNA, Neoplasm; Genes, p53; Humans; Lung Neoplasms; Osteosarcoma; RNA Processing, Post-Transcriptional; RNA, Messenger; RNA, Neoplasm; Thiazolidines; Ubiquitin | 2009 |
Characterization of the activities of actin-affecting drugs on tumor cell migration.
Metastases kill 90% of cancer patients. It is thus a major challenge in cancer therapy to inhibit the spreading of tumor cells from primary tumor sites to those particular organs where metastases are likely to occur. Whereas the actin cytoskeleton is a key component involved in cell migration, agents targeting actin dynamics have been relatively poorly investigated. Consequently, valuable in vitro pharmacological tools are needed to selectively identify this type of agent. In response to the absence of any standardized process, the present work aims to develop a multi-assay strategy for screening actin-affecting drugs with anti-migratory potentials. To validate our approach, we used two cancer cell lines (MCF7 and A549) and three actin-affecting drugs (cytochalasin D, latrunculin A, and jasplakinolide). We quantified the effects of these drugs on the kinetics of actin polymerization in tubes (by means of spectrofluorimetry) and on the dynamics of actin cytoskeletons within whole cells (by means of fluorescence microscopy). Using quantitative videomicroscopy, we investigated the actual effects of the drugs on cell motility. Finally, the combined drug effects on cell motility and cell growth were evaluated by means of a scratch-wound assay. While our results showed concordant drug-induced effects on actin polymerization occurring in vitro in test tubes and within whole cells, the whole cell assay appeared more sensitive than the tube assay. The inhibition of actin polymerization induced by cytochalasin D was paralleled by a decrease in cell motility for both cell types. In the case of jasplakinolide, which induces actin polymerization, while it significantly enhanced the locomotion of the A549 cells, it significantly inhibited that of the MCF-7 ones. All these effects were confirmed by means of the scratch-wound assay except of the jasplakinolide-induced effects on MCF-7 cell motility. These later seemed compensated by an additional effect occurring during wound recolonization (possibly acting on the cell growth features). In conclusion, the use of multi-assays with different levels of sophistication and biological relevance is recommended in the screening of new actin-affecting drugs with potentially anti-migratory effects. Topics: Actins; Adenocarcinoma; Antineoplastic Agents; Breast Neoplasms; Bridged Bicyclo Compounds, Heterocyclic; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Movement; Cytochalasin D; Cytoskeleton; Depsipeptides; Humans; Inhibitory Concentration 50; Lung Neoplasms; Neoplasm Invasiveness; Statistics, Nonparametric; Thiazoles; Thiazolidines | 2006 |
Direct association of TSLC1 and DAL-1, two distinct tumor suppressor proteins in lung cancer.
The tumor suppressor gene TSLC1, which we recently identified in human non-small cell lung cancer, encodes a membrane glycoprotein of the immunoglobulin superfamily. Here, we report that TSLC1 directly associates with DAL-1, a gene product of another lung tumor suppressor belonging to the protein 4.1 family. TSLC1 additionally interacts with the actin filament through DAL-1 at the cell-cell attached site where the complex formation of TSLC1 and DAL-1 is dependent on the integrity of actin cytoskeleton. Redistribution of both TSLC1 and DAL-1 to the newly generated membrane ruffling areas suggests that these proteins are also involved in cell motility accompanying the actin rearrangement. Furthermore, restoration of TSLC1 expression strongly suppressed the metastasis of a human non-small cell lung cancer cell line, A549, from the spleen to the liver in nude mice. These findings, together with frequent loss of their expression in lung cancers, suggest that TSLC1 and DAL-1 play a critical role in the same pathway involved in the suppression of lung tumor formation and metastasis. Topics: Actins; Amino Acid Sequence; Animals; Carcinoma, Non-Small-Cell Lung; Cell Adhesion; Cell Adhesion Molecule-1; Cell Adhesion Molecules; COS Cells; Cytochalasin D; Cytoskeleton; Humans; Immunoglobulins; Lung Neoplasms; Membrane Proteins; Microfilament Proteins; Microscopy, Fluorescence; Molecular Sequence Data; Protein Structure, Tertiary; Proteins; Sequence Homology, Amino Acid; Tumor Cells, Cultured; Tumor Suppressor Proteins | 2002 |