cytellin and Disease-Models--Animal

cytellin has been researched along with Disease-Models--Animal* in 45 studies

Reviews

4 review(s) available for cytellin and Disease-Models--Animal

ArticleYear
Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer.
    Nutrition and cancer, 2013, Volume: 65 Suppl 1

    Ocimum sanctum L. or Ocimum tenuiflorum L, commonly known as the Holy Basil in English or Tulsi in the various Indian languages, is a important medicinal plant in the various traditional and folk systems of medicine in Southeast Asia. Scientific studies have shown it to possess antiinflammatory, analgesic, antipyretic, antidiabetic, hepatoprotective, hypolipidemic, antistress, and immunomodulatory activities. Preclinical studies have also shown that Tulsi and some of its phytochemicals eugenol, rosmarinic acid, apigenin, myretenal, luteolin, β-sitosterol, and carnosic acid prevented chemical-induced skin, liver, oral, and lung cancers and to mediate these effects by increasing the antioxidant activity, altering the gene expressions, inducing apoptosis, and inhibiting angiogenesis and metastasis. The aqueous extract of Tulsi and its flavanoids, orintin, and vicenin are shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. The other important phytochemicals like eugenol, rosmarinic acid, apigenin, and carnosic acid are also shown to prevent radiation-induced DNA damage. This review summarizes the results related to the chemopreventive and radioprotective properties of Tulsi and also emphasizes aspects that warrant future research to establish its activity and utility in cancer prevention and treatment.

    Topics: Abietanes; Animals; Apigenin; Cinnamates; Depsides; Disease Models, Animal; Drug Evaluation, Preclinical; Eugenol; Humans; Luteolin; Neoplasms; Ocimum; Phytochemicals; Plant Extracts; Plants, Medicinal; Rosmarinic Acid; Sitosterols

2013
Dietary phosphilipids and sterols protective against peptic ulceration.
    Phytotherapy research : PTR, 2013, Volume: 27, Issue:9

    The prevalence of duodenal ulceration in regions of developing countries with a stable diet is related to the staple food(s) in that diet. A higher prevalence occurs in areas where the diet is principally milled rice, refined wheat or maize, yams, cassava, sweet potato or green bananas, and a lower prevalence in areas where the staple diet is based on unrefined wheat or maize, soya, certain millets or certain pulses. Experiments using animal peptic ulcer models showed that the lipid fraction in foods from the staple diets of low prevalence areas gave protection against both gastric and duodenal ulceration, including ulceration due to non-steroidal anti-inflammatory drugs (NSAIDs), and also promoted healing of ulceration. The protective activity was found to lie in the phospholipid, sterol and sterol ester fractions of the lipid. Amongst individual phospholipids present in the phospholipid fraction, phosphatidyl ethanolamine (cephalin) and phosphatidyl choline (Lecithin) predominated. The sterol fraction showing activity contained β-sitosterol, stigmasterol and an unidentified isomer of β-sitosterol. The evidence shows that dietary phytosterols and phospholipids, both individually and in combination, have a protective effect on gastroduodenal mucosa. These findings may prove to be important in the prevention and management of duodenal and gastric ulceration including ulceration due to NSAIDs.

    Topics: Animals; Diet; Disease Models, Animal; Duodenal Ulcer; Humans; Phospholipids; Phytosterols; Sitosterols

2013
Canalicular ABC transporters and liver disease.
    The Journal of pathology, 2012, Volume: 226, Issue:2

    Bile is a complex mixture that includes bile salts, the membrane phospholipid phosphatidylcholine (PC), cholesterol and various endobiotic and xenobiotic toxins, each of which is secreted across the canalicular membrane of the hepatocyte by different ATP-binding cassette (ABC) transporters. The bile salts are essential for the emulsification of dietary fat and lipophilic vitamins. They are synthesized from cholesterol in the hepatocyte and their secretion by the bile salt export pump (BSEP or ABCB11) drives bile flow and is the starting point for the enterohepatic cycle. The detergent nature of bile salts that is key to their physiological role also means that they are inherently cytotoxic, and failure to secrete bile (intraheptic cholestasis) can precipitate severe liver disease and mortality. Such progressive familial intrahepatic cholestasis (PFIC) comes in three types of autosomal recessive disease. PFIC2 is caused by mutation to ABCB11. PFIC3 is caused by mutation of a closely related ABC transporter, ABCB4, which flops PC into the outerleaflet of the canalicular membrane. The flopped PC is extracted by the bile salts in the canaliculus to form a mixed micelle that reduces bile salt detergent activity. The third protein that is essential for bile flow from the hepatocyte is a member of a different class of transporter protein, a P-type ATPase, ATP8B1. Mutation of ATP8B1 causes PFIC1, but ATP8B1 does not transport a component of bile into the canaliculus. Data from different laboratories, published this year, suggests two different roles for ATP8B1 in the hepatocyte: a lipid flippase, that counterbalances the deleterious effects of ABCB4 on barrier function of the canalicular membrane; and an anchor of the actin cytoskeleton necessary to form the microvilli of the brush border. These latest discoveries are described, along with a spectrum of cholestatic disorders whose aetiologies lie in these and other transporters of the canalicular membrane.

    Topics: Animals; ATP-Binding Cassette Transporters; Bile Acids and Salts; Bile Canaliculi; Biological Transport, Active; Cholestasis, Intrahepatic; Disease Models, Animal; Hepatocytes; Homeostasis; Humans; Intestinal Absorption; Microvilli; Mutation; Phospholipid Transfer Proteins; Sitosterols

2012
The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 years.
    Current opinion in clinical nutrition and metabolic care, 2001, Volume: 4, Issue:6

    Although plant sterols (phytosterols) were chemically described in 1922, their biological role in human and animal health has been underestimated. Their ability to control cholesterol plasma levels in hypercholesterolimic patients was first described in 1983 when the structure of phytosterols implied that they could, by steric hindrance, inhibit the absorption of cholesterol from our diets. This has led to the development of functional foods containing high contents of these plant molecules or their esters as cholesterol controlling foods. Over the last 15 years, however, several reports have appeared in the literature indicating that phytosterols have some immunological activity as highlighted in animal models of inflammation or even in in-vitro and in-vivo models of cancer (colorectal and breast cancer). These findings were paralleled by epidemiological studies correlating the reduced risk of numerous diseases and the dietary intake of phytosterols. It is only in the last 10 years, however, that their direct immune modulatory activity on human lymphocytes has been proven and the mechanism of action in cancer cells has been elucidated. The use of phytosterols as supportive therapies in certain chronic conditions has been tested under clinical trial conditions. This review presents a summary of the in-vitro and in-vivo studies published to date.

    Topics: Adjuvants, Immunologic; Animals; Cholesterol; Disease Models, Animal; HIV Infections; Humans; Hypercholesterolemia; Immune Tolerance; Intestinal Absorption; Neoplasms; Phytosterols; Phytotherapy; Sitosterols; Tuberculosis, Pulmonary; Tumor Cells, Cultured

2001

Other Studies

41 other study(ies) available for cytellin and Disease-Models--Animal

ArticleYear
β-sitosterol targets glucocorticoid receptor to reduce airway inflammation and remodeling in allergic asthma.
    Pulmonary pharmacology & therapeutics, 2023, Volume: 78

    In most asthma patients, symptoms are controlled by treatment with glucocorticoid, but long-term or high-dose use can produce adverse effects. Therefore, it is crucial to find new therapeutic strategies. β-sitosterol could suppress type Ⅱ inflammation in ovalbumin (OVA)-induced mice, but its mechanisms have remained unclear.. A binding activity of β-sitosterol with glucocorticoid receptor (GR) was analyzed by molecular docking. Human bronchial epithelial cells (BEAS-2B) and human bronchial smooth muscle cells (HBSMC) were treated with different concentrations (0, 1, 5, 10, 20, and 50 μg/mL) of β-sitosterol for suitable concentration selection. In transforming growth factor (TGF)-β1 treated BEAS-2B and HBSMC, cells were treated with 20 μg/mL β-sitosterol or dexamethasone (Dex) to analyze its possible mechanism. In OVA-induced mice, 2.5 mg/kg β-sitosterol or Dex administration was performed to analyze the therapeutic mechanism of β-sitosterol. A GR antagonist RU486 was used to confirm the mechanism of β-sitosterol in the treatment of asthma.. A good binding of β-sitosterol to GR (score = -8.2 kcal/mol) was found, and the GR expression was upregulated with β-sitosterol dose increase in BEAS-2B and HBSMC. Interleukin (IL)-25 and IL-33 secretion was significantly decreased by β-sitosterol in the TGF-β1-induced BEAS-2B, and the levels of collagen 1A and α-smooth muscle actin (SMA) were reduced in the TGF-β1-induced HBSMC. In the OVA-challenged mice, β-sitosterol treatment improved airway inflammation and remodeling through suppressing type Ⅱ immune response and collagen deposition. The therapeutic effects of β-sitosterol were similar to Dex treatment in vitro and in vivo. RU486 treatment clearly hampered the therapeutic effects of β-sitosterol in the TGF-β1-induced cells and OVA-induced mice.. This study identified that β-sitosterol binds GR to perform its functions in asthma treatment. β-sitosterol represent a potential therapeutic drug for allergic asthma.

    Topics: Airway Remodeling; Animals; Asthma; Collagen; Disease Models, Animal; Humans; Inflammation; Lung; Mice; Mice, Inbred BALB C; Mifepristone; Molecular Docking Simulation; Ovalbumin; Receptors, Glucocorticoid; Sitosterols; Transforming Growth Factor beta1

2023
β-Sitosterol Attenuates Dexamethasone-Induced Muscle Atrophy via Regulating FoxO1-Dependent Signaling in C2C12 Cell and Mice Model.
    Nutrients, 2022, Jul-14, Volume: 14, Issue:14

    Sarcopenia refers to a decline in muscle mass and strength with age, causing significant impairment in the ability to carry out normal daily functions and increased risk of falls and fractures, eventually leading to loss of independence. Maintaining protein homeostasis is an important factor in preventing muscle loss, and the decrease in muscle mass is caused by an imbalance between anabolism and catabolism of muscle proteins. Although β-sitosterol has various effects such as anti-inflammatory, protective effect against nonalcoholic fatty liver disease (NAFLD), antioxidant, and antidiabetic activity, the mechanism of β-sitosterol effect on the catabolic pathway was not well known. β-sitosterol was assessed in vitro and in vivo using a dexamethasone-induced muscle atrophy mice model and C2C12 myoblasts. β-sitosterol protected mice from dexamethasone-induced muscle mass loss. The thickness of gastrocnemius muscle myofibers was increased in dexamethasone with the β-sitosterol treatment group (DS). Grip strength and creatine kinase (CK) activity were also recovered when β-sitosterol was treated. The muscle loss inhibitory efficacy of β-sitosterol in dexamethasone-induced muscle atrophy in C2C12 myotube was also verified in C2C12 myoblast. β-sitosterol also recovered the width of myotubes. The protein expression of muscle atrophy F-box (MAFbx) was increased in dexamethasone-treated animal models and C2C12 myoblast, but it was reduced when β-sitosterol was treated. MuRF1 also showed similar results to MAFbx in the mRNA level of C2C12 myotubes. In addition, in the gastrocnemius and tibialis anterior muscles of mouse models, Forkhead Box O1 (FoxO1) protein was increased in the dexamethasone-treated group (Dexa) compared with the control group and reduced in the DS group. Therefore, β-sitosterol would be a potential treatment agent for aging sarcopenia.

    Topics: Animals; Dexamethasone; Disease Models, Animal; Forkhead Box Protein O1; Forkhead Transcription Factors; Mice; Muscle Fibers, Skeletal; Muscle, Skeletal; Muscular Atrophy; Sarcopenia; Sitosterols; Ubiquitin-Protein Ligases

2022
Plant Sterol-Poor Diet Is Associated with Pro-Inflammatory Lipid Mediators in the Murine Brain.
    International journal of molecular sciences, 2021, Dec-08, Volume: 22, Issue:24

    Plant sterols (PSs) cannot be synthesized in mammals and are exclusively diet-derived. PSs cross the blood-brain barrier and may have anti-neuroinflammatory effects. Obesity is linked to lower intestinal uptake and blood levels of PSs, but its effects in terms of neuroinflammation-if any-remain unknown. We investigated the effect of high-fat diet-induced obesity on PSs in the brain and the effects of the PSs campesterol and β-sitosterol on in vitro microglia activation. Sterols (cholesterol, precursors, PSs) and polyunsaturated fatty acid-derived lipid mediators were measured in the food, blood, liver and brain of C57BL/6J mice. Under a PSs-poor high-fat diet, PSs levels decreased in the blood, liver and brain (>50%). This effect was reversible after 2 weeks upon changing back to a chow diet. Inflammatory thromboxane B2 and prostaglandin D2 were inversely correlated to campesterol and β-sitosterol levels in all brain regions. PSs content was determined post mortem in human cortex samples as well. In vitro, PSs accumulate in lipid rafts isolated from SIM-A9 microglia cell membranes. In summary, PSs levels in the blood, liver and brain were associated directly with PSs food content and inversely with BMI. PSs dampen pro-inflammatory lipid mediators in the brain. The identification of PSs in the human cortex in comparable concentration ranges implies the relevance of our findings for humans.

    Topics: Animal Feed; Animals; Cells, Cultured; Cholesterol; Chromatography, Liquid; Diet, High-Fat; Disease Models, Animal; Fatty Acids, Unsaturated; Humans; Lipidomics; Liver; Male; Mice; Mice, Inbred C57BL; Microglia; Neuroinflammatory Diseases; Obesity; Phytosterols; Sitosterols; Tandem Mass Spectrometry

2021
Supercritical Fluid Extract of
    Molecules (Basel, Switzerland), 2021, Feb-15, Volume: 26, Issue:4

    Putrajeevak (

    Topics: Animals; Chromatography, Supercritical Fluid; Disease Models, Animal; Euphorbiaceae; Fatty Acids; Female; Fertility; Inflammation; Male; Ovary; Ovum; Pelvis; Plant Oils; Seeds; Sitosterols; Testis; Zebrafish

2021
A single intranigral administration of β-sitosterol β-d-glucoside elicits bilateral sensorimotor and non-motor alterations in the rat.
    Behavioural brain research, 2020, 01-27, Volume: 378

    Parkinson's disease (PD) is a progressive neuropathology characterized by motor and non-motor alterations. β-sitosterol β-d-glucoside (BSSG) is a neurotoxin whose prolonged oral administration in rats has been proposed as a new PD model. Herein, we demonstrate that a single, unilateral, and intranigral administration of BSSG also elicits bilateral sensorimotor alterations in the rat. Six behavioral tests evaluated the effect of different concentrations of BSSG (3, 6, 9, and 12 μg/μL DMSO) from 15 to 120 days after administration. The first behavioral alterations, which appeared on day 15, were unbalanced and uncoordinated gaits and a decrease in the sensorimotor cortex activity, as evidenced by the beam-walking and the vibrissae tests, respectively. After 30 days, the corridor test revealed hyposmia and a decreased locomotor activity in the open field. The last alteration was a depressive-like behavior, as shown by the forced swim test on days 60 and 120. According to the cylinder test, no locomotor asymmetry was observed over time with any BSSG concentrations tested. Also, a mesencephalic TH(+) cell loss (p <  0.05) was shown on day 30 when compared with the mock condition, and such a loss was even higher on day 120. At this time, the presence of pathological α-synuclein aggregates in the mesencephalon was documented. Our results show that the stereotaxic intranigral administration of BSSG reproduces some characteristics of oral administration, such as the progression of behavioral alterations, dopaminergic neurons loss, and the presence of Lewy body-like synuclein aggregations, in less time and resources.

    Topics: Animals; Anosmia; Depression; Disease Models, Animal; Dopaminergic Neurons; Gait Disorders, Neurologic; Locomotion; Male; Mesencephalon; Neurotoxins; Parkinson Disease; Parkinson Disease, Secondary; Rats; Rats, Wistar; Sensorimotor Cortex; Sitosterols; Substantia Nigra

2020
Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease.
    Journal of lipid research, 2020, Volume: 61, Issue:6

    Niemann-Pick type C (NPC)1 disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key factor in the development of atherosclerosis and NASH. In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH, and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring a

    Topics: Animals; Cholesterol; Dietary Supplements; Disease Models, Animal; Liver; Male; Mice; Niemann-Pick Disease, Type C; Sitosterols; Sphingolipids

2020
Unilateral intranigral administration of β-sitosterol β-D-glucoside triggers pathological α-synuclein spreading and bilateral nigrostriatal dopaminergic neurodegeneration in the rat.
    Acta neuropathologica communications, 2020, 04-22, Volume: 8, Issue:1

    The spreading and accumulation of α-synuclein and dopaminergic neurodegeneration, two hallmarks of Parkinson's disease (PD), have been faithfully reproduced in rodent brains by chronic, oral administration of β-sitosterol β-D-glucoside (BSSG). We investigated whether a single injection of BSSG (6 μg BSSG/μL DMSO) in the left substantia nigra of Wistar rats causes the same effects. Mock DMSO injections and untreated rats formed control groups. We performed immunostainings against the pathological α-synuclein, the dopaminergic marker tyrosine hydroxylase (TH), the neuroskeleton marker β-III tubulin, the neurotensin receptor type 1 (NTSR1) as non-dopaminergic phenotype marker and Fluro-Jade C (F-J C) label for neurodegeneration. Using β-galactosidase (β-Gal) assay and active caspase-3 immunostaining, we assessed cell death mechanisms. Golgi-Cox staining was used to measure the density and types of dendritic spines of striatal medium spiny neurons. Motor and non-motor alterations were also evaluated. The study period comprised 15 to 120 days after the lesion. In the injured substantia nigra, BSSG caused a progressive α-synuclein aggregation and dopaminergic neurodegeneration caused by senescence and apoptosis. The α-synuclein immunoreactivity was also present within microglia cells. Decreased density of dopaminergic fibers and dendritic spines also occurred in the striatum. Remarkably, all the histopathological changes also appeared on the contralateral nigrostriatal system, and α-synuclein aggregates were present in other brain regions. Motor and non-motor behavioral alterations were progressive. Our data show that the stereotaxic BSSG administration reproduces PD α-synucleinopathy phenotype in the rat. This approach will aid in identifying the spread mechanism of α-synuclein pathology and validate anti-synucleinopathy therapies.

    Topics: alpha-Synuclein; Animals; Disease Models, Animal; Dopaminergic Neurons; Injections, Intraventricular; Nerve Degeneration; Parkinson Disease; Rats; Rats, Wistar; Sitosterols; Substantia Nigra

2020
Prophylactic Intra-Uterine β-Cyclodextrin Administration during Intra-Uterine
    Nutrients, 2020, May-05, Volume: 12, Issue:5

    Chorioamnionitis can lead to inflammation and injury of the liver and gut, thereby predisposing patients to adverse outcomes such as necrotizing enterocolitis (NEC). In addition, intestinal bile acids (BAs) accumulation is causally linked to NEC development. Plant sterols are a promising intervention to prevent NEC development, considering their anti-inflammatory properties in the liver. Therefore, we investigated whether an intra-amniotic (IA)

    Topics: Animals; beta-Cyclodextrins; Cholesterol; Chorioamnionitis; Disease Models, Animal; Drug Carriers; Enterocolitis, Necrotizing; Enterohepatic Circulation; Female; Fetus; Inflammation; Injections, Intralesional; Liver; Phytosterols; Phytotherapy; Post-Exposure Prophylaxis; Pregnancy; Sheep; Sitosterols; Ureaplasma; Ureaplasma Infections

2020
Imperatorin and β-sitosterol have synergistic activities in alleviating collagen-induced arthritis.
    Journal of leukocyte biology, 2020, Volume: 108, Issue:2

    Rheumatoid arthritis (RA) is a chronic disease with complex molecular network of pathophysiology, single drug is usually not full satisfactory because it is almost impossible to target the whole molecular network of the disease. Drug combinations that act synergistically with each another is an effective strategy in RA therapy. In this study, we aimed to establish a new strategy to search effective synergized compounds from Chinese herbal medicine (CHM) used in RA. Based on multi-information integrative approaches, imperatorin (IMP) and β-sitosterol (STO) were predicted as the most effective pair for RA therapy. Further animal experiments demonstrated that IMP+STO treatment ameliorated arthritis severity of collagen-induced arthritis (CIA) rats in a synergistic manner, whereas IMP or STO administration separately had no such effect. RNA sequencing and IPA analysis revealed that the synergistic mechanism of IMP+STO treatment was related to its regulatory effect on 5 canonical signaling pathways, which were not found when IMP or STO used alone. Moreover, LTA, CD83, and SREBF1 were 3 important targets for synergistic mechanism of IMP+STO treatment. The levels of these 3 genes were significantly up-regulated in IMP+STO group compared to model group, whereas IMP or STO administration separately had no effect on them. In conclusion, this study found that IMP and STO were 2 synergistic compounds from the CHM in RA therapy, whose synergistic mechanism was closely related to regulate the levels of LTA, CD83, and SREBF1.

    Topics: Animals; Arthritis, Experimental; Arthritis, Rheumatoid; CD4-Positive T-Lymphocytes; Computational Biology; Disease Models, Animal; Drug Synergism; Drugs, Chinese Herbal; Furocoumarins; Male; Phytotherapy; Rats; Severity of Illness Index; Signal Transduction; Sitosterols

2020
β-Sitosterol attenuates liver injury in a rat model of chronic alcohol intake.
    Archives of pharmacal research, 2020, Volume: 43, Issue:11

    Liver disease associated with long-term drinking is one of the leading causes of death. There is an urgent need for more effective drugs to reduce alcoholic liver damage. Yin Chen Hao, a traditional Chinese herbal medicine, is widely used for liver diseases. Here, we aimed to explore the protective effect of β-sitosterol (the active ingredient of Artemisia spp.) on alcoholic liver injuries. We treated the rats with alcohol and different dosages of β-sitosterol to detect the expression levels of liver function indicators in serum. The functions of β-sitosterol were evaluated based on variations in histology, liver function indicators and DNA oxidative damages. The underlying mechanism was investigated by measuring lipid peroxidation, the antioxidant, the expression of cytochrome P450 2E1 and the expression of apoptosis related genes. The results showed that β-sitosterol could improve liver histology and suppress biochemical indicators caused by alcohol in serum. In addition, β-sitosterol alleviates alcohol-induced oxidative stress, such as restoring erythrocyte membrane fluidity, reducing glutathione depletion, restoring antioxidant enzyme activity and reducing malondialdehyde overproduction. Furthermore, β-sitosterol downregulated the expression of apoptosis-related genes through the PI3K/Akt pathway. In conclusion, β-sitosterol has a protective effect on chronic alcoholism and has broad clinical application prospects in the treatment of alcohol-induced liver damage.

    Topics: Alcohol Drinking; Animals; Antioxidants; Apoptosis; Apoptosis Regulatory Proteins; Disease Models, Animal; DNA Damage; Lipid Peroxidation; Liver; Liver Diseases, Alcoholic; Male; Oxidative Stress; Phosphatidylinositol 3-Kinase; Proto-Oncogene Proteins c-akt; Rats, Wistar; Sitosterols

2020
Effect of collagenase ointment versus moist exposed burn ointment on healing of full-thickness burns in mice by removing of necrotic tissue.
    Dermatologic therapy, 2019, Volume: 32, Issue:1

    The presence of necrotic tissue is one of the major problems that affect healing of burn wounds. The present study was designed to find the effectiveness of collagenase versus moist exposed burn ointment (MEBO) on removal of necrotic tissue of burns. Twenty mice randomly assigned and divided into four groups. For Group 1, burn wounds were treated with collagenase ointment only, Group 2 burn wounds were treated with MEBO, Group 3 burn wounds were treated with white vaseline alone, and Group 4 burn wounds were considered as control and left without treatment. In each group, the time of treatment was considered. The results indicated that the removal time of necrotic tissue and healing process was better in the case of using collagenase than using MEBO for treatment of burns.

    Topics: Administration, Cutaneous; Animals; Burns; Disease Models, Animal; Mice; Microbial Collagenase; Necrosis; Ointments; Sitosterols; Skin; Time Factors; Wound Healing

2019
β-Sitosterol improves experimental colitis in mice with a target against pathogenic bacteria.
    Journal of cellular biochemistry, 2019, Volume: 120, Issue:4

    In this article, we aim to examine the novel effects of β-sitosterol on murine experimental colitis. β-Sitosterol significantly reduces the weight loss, colon length, and alleviated microscopic appearances of colitis induced by dextran sulfate sodium. This compound also decreases the levels of TNF-α, IL-6, and IL-1β in intestinal tissue of mice with experimental colitis in a concentration-dependent manner. β-Sitosterol treatment to intestinal epithelial cells significantly increases expression of antimicrobial peptides and reduces survival of intracellular Salmonella typhimurium. These results showed the multiple effects of β-sitosterol against pathogenic bacteria for a novel approach to the treatment of colonic inflammation.

    Topics: Animals; Colitis; Dextran Sulfate; Disease Models, Animal; Hypolipidemic Agents; Inflammation; Intestinal Mucosa; Male; Mice; Mice, Inbred C57BL; Salmonella typhimurium; Sitosterols; Typhoid Fever

2019
Effects of Stigmasterol and β-Sitosterol on Nonalcoholic Fatty Liver Disease in a Mouse Model: A Lipidomic Analysis.
    Journal of agricultural and food chemistry, 2018, Apr-04, Volume: 66, Issue:13

    To study the effects of stigmasterol and β-sitosterol on high-fat Western diet (HFWD)-induced nonalcoholic fatty liver disease (NAFLD), lipidomic analyses were conducted in liver samples collected after 33 weeks of the treatment. Principal component analysis showed these phytosterols were effective in protecting against HFWD-induced NAFLD. Orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and S-plots showed that triacylglycerols (TGs), phosphatidylcholines, cholesteryl esters, diacylglycerols, and free fatty acids (FFAs) were the major lipid species contributing to these discriminations. The alleviation of NAFLD is mainly associated with decreases in hepatic cholesterol, TGs with polyunsaturated fatty acids, and alterations of free hepatic FFA. In conclusion, phytosterols, at a dose comparable to that suggested for humans by the FDA for the reduction of plasma cholesterol levels, are shown to protect against NAFLD in this long-term (33-week) study.

    Topics: Animals; Cholesterol; Diet, High-Fat; Disease Models, Animal; Humans; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Sitosterols; Stigmasterol; Triglycerides

2018
Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet.
    Biochimica et biophysica acta. Molecular and cell biology of lipids, 2018, Volume: 1863, Issue:10

    To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD).. Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17 weeks.. Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides.. Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels.

    Topics: Animals; Bile Acids and Salts; Ceramides; Diet, High-Fat; Disease Models, Animal; Feces; Lipid Metabolism; Mice; Non-alcoholic Fatty Liver Disease; Phospholipids; Sitosterols; Stigmasterol; Treatment Outcome; Triglycerides

2018
Pharmacokinetics and pharmacodynamics of citrus peel extract in lipopolysaccharide-induced acute lung injury combined with Pinelliae Rhizoma Praeparatum.
    Food & function, 2018, Nov-14, Volume: 9, Issue:11

    Dry citrus peel (Chenpi) is not only consumed as a dietary supplement, but also used for the treatment of respiratory diseases. Pinelliae Rhizoma Praeparatum (Banxia) is always used with Chenpi for the treatment of respiratory diseases, but β-sitosterol, the main active component in Banxia, as a food additive, shows no respiratory system activity. In the present study, the pharmacokinetic characters showed that the absorption of the active components of Chenpi was accelerated under pathological conditions combined with Banxia. Although the bioavailability of active components did not significantly change, the distribution of active components in tissues increased, particularly in the target organ. These results are consistent with the combination of Chenpi with β-sitosterol. Furthermore, the pharmacodynamics result also indicated that Chenpi combined with Banxia or β-sitosterol was able to ameliorate histopathologic damage and decrease the levels of inflammatory factors. The results suggest that pharmacokinetic interactions improve the pharmacological activity of Chenpi in respiratory diseases.

    Topics: Acute Lung Injury; Animals; Citrus; Disease Models, Animal; Drugs, Chinese Herbal; Fruit; Lipopolysaccharides; Male; Pinellia; Plant Extracts; Rats; Rats, Sprague-Dawley; Reproducibility of Results; Sitosterols

2018
First Report of Plant-Derived β-Sitosterol with Antithrombotic, in Vivo Anticoagulant, and Thrombus-Preventing Activities in a Mouse Model.
    Journal of natural products, 2018, 11-26, Volume: 81, Issue:11

    Inhibitors of thrombin, a key enzyme in the blood coagulation cascade, are of great interest because of their selective specificity and effectiveness in anticoagulation therapy against cardiovascular disorders. The natural soybean phytosterol, β-sitosterol (BSS) demonstrated anticoagulant activity by dose-dependent inhibition of thrombin in an uncompetitive manner with a K

    Topics: Animals; Anticoagulants; Antithrombins; Catalysis; Disease Models, Animal; Female; Fibrinogen; Humans; Male; Mice; Plants; Platelet Aggregation Inhibitors; Sitosterols; Thrombin; Thrombosis

2018
Hair Regenerative Mechanisms of Red Ginseng Oil and Its Major Components in the Testosterone-Induced Delay of Anagen Entry in C57BL/6 Mice.
    Molecules (Basel, Switzerland), 2017, Sep-08, Volume: 22, Issue:9

    Hair loss (alopecia) is a universal problem for numerous people in the world. The present study was conducted to investigate the effects of red ginseng oil (RGO) and its major components on hair re-growth using testosterone (TES)-induced delay of anagen entry in C57BL/6 mice and their mechanisms of action. Seven-week-old C57BL/6 mice were daily treated with TES for 1 h prior to topical application of 10% RGO, 1% linoleic acid (LA), 1% β-sitosterol (SITOS), or 1% bicyclo(10.1.0)tridec-1-ene (BICYCLO) once a day for 28 days. Hair regenerative capacity was significantly restored by treatment of RGO and its major compounds in the TES-treated mice. Histological analysis showed that RGO along with LA and SITOS but not BICYCLO promoted hair growth through early inducing anagen phase that was delayed by TES in mice. Treatment of mice with RGO, LA, or SITOS up-regulated Wnt/β-catenin and Shh/Gli pathways-mediated expression of genes such as β-catenin, Lef-1, Sonic hedgehog, Smoothened, Gli-1, Cyclin D1, and Cyclin E in the TES-treated mice. In addition, RGO and its major components reduced the protein level of TGF-β but enhanced the expression of anti-apoptotic protein Bcl-2. These results suggest that RGO is a potent novel therapeutic natural product for treatment of androgenic alopecia possibly through hair re-growth activity of its major components such as LA and SITOS.

    Topics: Alopecia; Animals; beta Catenin; Cyclins; Disease Models, Animal; Gene Expression Regulation; Hair Follicle; Hedgehog Proteins; Linoleic Acid; Lymphoid Enhancer-Binding Factor 1; Male; Mice; Mice, Inbred C57BL; Panax; Plant Oils; Proto-Oncogene Proteins c-bcl-2; Regeneration; Sitosterols; Smoothened Receptor; Testosterone; Transforming Growth Factor beta; Zinc Finger Protein GLI1

2017
Quantification of polyphenols and flavonoid content and evaluation of anti-inflammatory and antimicrobial activities of Stenocereus stellatus extracts.
    Natural product research, 2016, Volume: 30, Issue:16

    The hexanic, ethyl acetate and methanolic extracts from branches of Stenocereus stellatus were tested in both the 12-O-tetradecanoylphorbol-13-acetate (TPA) - induced ear oedema model and antimicrobial activity assay. The % of oedema inhibition, the Minimum Inhibitory Concentration (MIC), as well as the polyphenolic and flavonoid content were determined. Also, extracts were analysed by gas chromatography-mass spectrometry (GC-MS). In TPA model, the three extracts showed moderate oedema inhibition. In the antimicrobial activity assay, methanolic extract shows better MIC against all strains. The lowest MICs were for Candida albicans (31 μg/mL) and Rhizopus sp. (15 μg/mL). Also, 50.78 mg eq. of gallic acid/g extract of polyphenol and 115.12 mg eq. of catequine/g extract of flavonoids content were founded in ethyl acetate extract. In the chromatographic analysis, β-sitosterol, β-amyrine, betulin and some other molecules were identified. The results show that S. stellatus possess antimicrobial activities against some fungus species.

    Topics: Animals; Anti-Infective Agents; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Cactaceae; Candida albicans; Disease Models, Animal; Edema; Flavonoids; Gas Chromatography-Mass Spectrometry; Male; Microbial Sensitivity Tests; Phorbol Esters; Plant Extracts; Polyphenols; Rhizopus; Secondary Metabolism; Sitosterols

2016
Amelioration of testosterone induced benign prostatic hyperplasia by Prunus species.
    Journal of ethnopharmacology, 2016, Aug-22, Volume: 190

    Benign prostatic hyperplasia (BPH) is a common urological disorder of men. The ethnomedicinal use of an African plant Prunus africana (Hook.f.) Kalkman (Pygeum) in treating men's problems made it a popular remedy all over the globe for the treatment of BPH and related disorders. However, rampant collections made from the wild in Africa have pushed the plant to Appendix II of CITES demanding conservation of the species.. In the present study, the aim was to unearth the protective effect of bark of different species of Prunus against BPH. The five selected Indian plants of family Rosaceae viz. Prunus amygdalus Stokes, Prunus armeniaca L., Prunus cerasoides Buch.-Ham. ex D. Don, Prunus domestica L. and Prunus persica (L.) Batsch were evaluated against P. africana (Hook.f.) Kalkman for a suitable comparison of efficacy as antiBPH agents.. The antiBPH activity was evaluated in testosterone (2mg/kg/day, s.c, 21 days) induced BPH in Wistar rats. The parameters studied were body weights; histopathological examination, immunohistochemistry (PCNA) and biochemical estimations of the prostate; supported by prostatic index, testicular index, creatinine, testosterone levels; antioxidant and anti-inflammatory evaluation. The study also included chemical profiling using three markers (β-sitosterol, docosyl ferulate and ursolic acid) and estimation of β-sitosterol content through GC.. The Prunus species showed the presence of all the three markers in their TLC fingerprint profile and maximum amount of β-sitosterol by GC was observed in P. domestica. Interestingly, all the species exhibited significant amelioration in testosterone induced parameters with P. domestica showing the most encouraging effect as indicated from histopathological examination, immunohistochemistry and biochemical studies. The Prunus species further showed remarkable anti-inflammatory and antioxidant activity signifying their role in interfering with various possible factors involved in BPH.. These findings are suggestive of a meaningful inhibitory effect of testosterone induced BPH by the bark of different species of Prunus in the order of P. domestica, P. persica, P. amygdalus, P. cerasoides and P. armeniaca with an efficacy of P. domestica comparable to P. africana and can be used as the potential backup of Pygeum for the management of BPH.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Biomarkers; Chromatography, Gas; Chromatography, Thin Layer; Disease Models, Animal; Inflammation Mediators; Male; Oxidative Stress; Phytotherapy; Plant Bark; Plant Extracts; Plants, Medicinal; Prostate; Prostatic Hyperplasia; Prunus armeniaca; Prunus domestica; Prunus dulcis; Prunus persica; Rats, Wistar; Sitosterols; Testosterone; Triterpenes; Urological Agents; Ursolic Acid

2016
Vascular effects of oxysterols and oxyphytosterols in apoE -/- mice.
    Atherosclerosis, 2015, Volume: 240, Issue:1

    The aim of our study was to investigate vascular effects of oxysterols and oxyphytosterols on reactive oxygen species (ROS), endothelial progenitor cells, endothelial function and atherogenesis.. Male apoE-/-mice were treated with cholesterol, sitosterol, 7-ß-OH-cholesterol, 7-ß-OH-sitosterol, or cyclodextrin by daily intraperitoneal application. The respective concentrations in the plasma and in the arterial wall were determined by gas chromatography-flame ionization or mass spectrometry. ROS production was assessed by electron-spin resonance spectroscopy in the aorta, endothelial function of aortic rings and atherosclerosis in the aortic sinus was quantitated after 4 weeks.. Compared to vehicle, there was no difference in plasma cholesterol levels and arterial wall concentrations after i.p. application of cholesterol. 7-ß-OH-cholesterol concentrations were increased in the plasma (33.7±31.5 vs. 574.57.2±244.92 ng/ml) but not in the arterial wall (60.1±60.1 vs. 59.3±18.2 ng/mg). Sitosterol (3.39±0.96 vs. 8.16±4.11 mg/dL; 0.08±0.04 vs. 0.16±0.07 μg/mg, respectively) and 7-ß-OH-sitosterol concentrations (405.1±151.8 vs. 7497±3223 ng/ml; 0.24±0.13 vs. 16.82±11.58 ng/mg, respectively) increased in the plasma and in the aorta. The i.p-application of the non-oxidized cholesterol or sitosterol did not induce an increase of plasma oxysterols or oxyphytosterols concentrations. Oxidative stress in the aorta was increased in 7-ß-OH-sitosterol treated mice, but not in mice treated with cholesterol, sitosterol, or 7-ß-OH-cholesterol. Moreover, cholesterol, sitosterol, 7-ß-OH-cholesterol, and 7-ß-OH-sitosterol did not affect endothelial-dependent vasodilation, or early atherosclerosis.. Increased oxyphytosterol concentrations in plasma and arterial wall were associated with increased ROS production in aortic tissue, but did not affect endothelial progenitor cells, endothelial function, or early atherosclerosis.

    Topics: Animals; Aorta; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Cell Movement; Cells, Cultured; Cholesterol; Cyclodextrins; Disease Models, Animal; Endothelial Progenitor Cells; Hydroxycholesterols; Male; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Reactive Oxygen Species; Sitosterols; Time Factors; Vasodilation

2015
The Progressive BSSG Rat Model of Parkinson's: Recapitulating Multiple Key Features of the Human Disease.
    PloS one, 2015, Volume: 10, Issue:10

    The development of effective neuroprotective therapies for Parkinson's disease (PD) has been severely hindered by the notable lack of an appropriate animal model for preclinical screening. Indeed, most models currently available are either acute in nature or fail to recapitulate all characteristic features of the disease. Here, we present a novel progressive model of PD, with behavioural and cellular features that closely approximate those observed in patients. Chronic exposure to dietary phytosterol glucosides has been found to be neurotoxic. When fed to rats, β-sitosterol β-d-glucoside (BSSG) triggers the progressive development of parkinsonism, with clinical signs and histopathology beginning to appear following cessation of exposure to the neurotoxic insult and continuing to develop over several months. Here, we characterize the progressive nature of this model, its non-motor features, the anatomical spread of synucleinopathy, and response to levodopa administration. In Sprague Dawley rats, chronic BSSG feeding for 4 months triggered the progressive development of a parkinsonian phenotype and pathological events that evolved slowly over time, with neuronal loss beginning only after toxin exposure was terminated. At approximately 3 months following initiation of BSSG exposure, animals displayed the early emergence of an olfactory deficit, in the absence of significant dopaminergic nigral cell loss or locomotor deficits. Locomotor deficits developed gradually over time, initially appearing as locomotor asymmetry and developing into akinesia/bradykinesia, which was reversed by levodopa treatment. Late-stage cognitive impairment was observed in the form of spatial working memory deficits, as assessed by the radial arm maze. In addition to the progressive loss of TH+ cells in the substantia nigra, the appearance of proteinase K-resistant intracellular α-synuclein aggregates was also observed to develop progressively, appearing first in the olfactory bulb, then the striatum, the substantia nigra and, finally, hippocampal and cortical regions. The slowly progressive nature of this model, together with its construct, face and predictive validity, make it ideal for the screening of potential neuroprotective therapies for the treatment of PD.

    Topics: alpha-Synuclein; Animals; Brain; Disease Models, Animal; Motor Activity; Neurons; Parkinson Disease, Secondary; Rats; Rats, Sprague-Dawley; Sitosterols

2015
Panax ginseng is neuroprotective in a novel progressive model of Parkinson's disease.
    Experimental gerontology, 2014, Volume: 50

    Panax ginseng has been used in traditional Chinese medicine for centuries. Among its various benefits is a pluripotent targeting of the various events involved in neuronal cell death. This includes anti-inflammatory, anti-oxidant, and anti-apoptotic effects. Indeed, ginseng extract and its individual ginsenosides have been demonstrated to influence a number of biochemical markers implicated in Parkinson's disease (PD) pathogenesis. We have reported previously that administration of the ginseng extract, G115, afforded robust neuroprotection in two rodent models of PD. However, these traditional rodent models are acute in nature and do accurately recapitulate the progressive nature of the disease. Chronic exposure to the dietary phytosterol glucoside, β-sitosterol β-d-glucoside (BSSG) triggers the progressive development of neurological deficits, with behavioral and cellular features that closely approximate those observed in PD patients. Clinical signs and histopathology continue to develop for several months following cessation of exposure to the neurotoxic insult. Here, we utilized this model to further characterize the neuroprotective effects of the ginseng extract, G115. Oral administration of this extract significantly reduced dopaminergic cell loss, microgliosis, and accumulation of α-synuclein aggregates. Further, G115 administration fully prevented the development of locomotor deficits, in the form of reduced locomotor activity and coordination. These results suggest that ginseng extract may be a potential neuroprotective therapy for the treatment of PD.

    Topics: alpha-Synuclein; Animals; Cell Death; Disease Models, Animal; Disease Progression; Drug Evaluation, Preclinical; Encephalitis; Female; Gait Disorders, Neurologic; Neuroprotective Agents; Panax; Parkinson Disease, Secondary; Phytotherapy; Plant Extracts; Rats; Rats, Sprague-Dawley; Sitosterols; Substantia Nigra

2014
Anti-inflammatory effect of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranosyl sitosterol] from Agave angustifolia on ear edema in mice.
    Molecules (Basel, Switzerland), 2014, Sep-29, Volume: 19, Issue:10

    In Mexico Agave angustifolia has traditionally been used to treat inflammation. The aim of this study was to measure the anti-inflammatory effect of the extract of A. angustifolia, the isolation and identification of active compounds. From the acetone extract two active fractions were obtained, (AsF13 and AaF16). For the characterization of pharmacological activity, the acute inflammatory model of mouse ear edema induced with TPA was used. The tissue exposed to TPA and treatments were subjected to two analysis, cytokine quantification (IL-1β, IL-6, IL-10 and TNF-α) and histopathological evaluation. The active fraction (AaF16) consisted principally of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranpsyl] sitosterol. In AaF13 fraction was identified β-sitosteryl glucoside (2) and stigmasterol (3). The three treatments tested showed a concentration-dependent anti-inflammatory effect (AaAc Emax = 33.10%, EC50 = 0.126 mg/ear; AaF13 Emax = 54.22%, EC50 = 0.0524 mg/ear; AaF16 Emax = 61.01%, EC50 = 0.050 mg/ear). The application of TPA caused a significant increase on level of IL-1β, IL-6 and TNFα compared with basal condition, which was countered by any of the experimental treatments. Moreover, the experimental treatments induced a significant increase in the levels of IL-4 and IL-10, compared to the level observed when stimulated with TPA. Therefore, the anti-inflammatory effect of Agave angustifolia, is associated with the presence of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranosyl] sitosterol.

    Topics: Agave; Animals; Anti-Inflammatory Agents; Cytokines; Disease Models, Animal; Ear; Edema; Male; Mice; Plant Extracts; Sitosterols

2014
Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2013, Volume: 53

    Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance and antioxidant defenses reduction. Obesity-mediated oxidative stress plays an important role in the pathogenesis of dyslipidemia, vascular disease, and nonalcoholic hepatic steatosis. The antidyslipidemic activity of pigeon pea were evaluated by high-fat diet (HFD) hamsters model, in which the level of high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), and total triglyceride (TG) were examined. We found that pigeon pea administration promoted cholesterol converting to bile acid in HFD-induced hamsters, thereby exerting hypolipidemic activity. In the statistical results, pigeon pea significantly increased hepatic carnitine palmitoyltransferase-1 (CPT-1), LDL receptor, and cholesterol 7α-hydroxylase (also known as cytochrome P450 7A1, CYP7A1) expression to attenuate dyslipidemia in HFD-fed hamsters; and markedly elevated antioxidant enzymes in the liver of HFD-induced hamsters, further alleviating lipid peroxidation. These effects may attribute to pigeon pea contained large of unsaturated fatty acids (UFA; C18:2) and phytosterol (β-sitosterol, campesterol, and stigmasterol). Moreover, the effects of pigeon pea on dyslipidemia were greater than β-sitosterol administration (4%), suggesting that phytosterone in pigeon pea could prevent metabolic syndrome.

    Topics: Animals; Antioxidants; Cajanus; Carnitine O-Palmitoyltransferase; Cholesterol; Cholesterol 7-alpha-Hydroxylase; Cholesterol, HDL; Cholesterol, LDL; Chromatography, High Pressure Liquid; Cricetinae; Diet, High-Fat; Disease Models, Animal; Hypercholesterolemia; Lipid Peroxidation; Liver; Male; Obesity; Oxidative Stress; Phytosterols; Receptors, LDL; Sitosterols; Stigmasterol; Triglycerides

2013
[Effect of banxia xiexin decoction on leptin and endothelin-1 of gastric ulcer rat and the optimal combination screening of active components].
    Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials, 2012, Volume: 35, Issue:10

    To select the optimal combination of five active component of Banxia Xiexin Decoction on gastric ulcer rat, and observe its effect on Leptin and ET-1.. Eighty-seven SD rats were randomly divided into normal group, sham-operated group and acetic acid-induced gastric ulcer group, omeprazole group as a positive control, five active components (glycyrrhetic acid, beta-sitosterol, berberine, baicalin and ginsenoside) of Banxia Xiexin Decoction were divided into groups by L16 orthogonal design. The ulcer area, and the content of Leptin and ET-1, and the mRNA expression level of both were detected.. Among the sixteen orthogonal design groups, the ulcer area of these groups using both beta-sitosterol and berberine was the smallest (P < 0.05), the content of Leptin of these groups using both glycyrrhetic acid and ginsenoside was the highest in blood serum (P < 0.05), the group using glycyrrhetic acid had the minimum concentration of ET-1 in blood plasma. Compared with model group, berberine could raise the mRNA expression level of Leptin (P < 0.01), and beta-sitosterol could lower the mRNA expression level of ET-1 (P < 0.01).. The pathogenesis of gastric ulcer may be related with the down-regulation of concentration and mRNA expression level of Leptin, and upregulation of concentration and mRNA expression level of ET-1, the active components in Banxia Xiexin Decoction may upregulated Leptin and inhibit ET-1 to accelerate the healing of gastric ulcer.

    Topics: Acetates; Animals; Berberine; Disease Models, Animal; Drugs, Chinese Herbal; Endothelin-1; Flavonoids; Gastric Mucosa; Leptin; Male; Plants, Medicinal; Random Allocation; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sitosterols; Stomach Ulcer

2012
Development and characterization of phyto-vesicles of β-sitosterol for the treatment of androgenetic alopecia.
    Archives of dermatological research, 2012, Volume: 304, Issue:7

    Alopecia is a psychologically distressing phenomenon. Androgenetic alopecia (AGA) is the most common form of alopecia, which affects millions of men and women worldwide, and is an androgen driven disorder. To study the effect of β-sitosterol phyto-vesicles on AGA, the testosterone-induced alopecia model was used. For the study, the albino rats were used and the period of study was 21 days. β-Sitosterol is a phytosterol which is chemically similar to cholesterol. This compound was found suitable for the preparation of phyto-vesicles by the process involving its complexation with phosphatidyl choline. Pharmacokinetic studies of β-sitosterol reveal its poor absorption through the intestine. The objective of the present study is to enhance the bioavailability of β-sitosterol by its complexation with phosphatidyl choline and then to formulate it as phyto-vesicles for the treatment of alopecia. The complex of β-sitosterol was prepared with phosphatidyl choline and characterized on the basis of solubility, melting point, TLC, UV, IR and NMR spectroscopy. This complex was then formulated as phyto-vesicles and then characterized. The results revealed that effect on alopecia is better in case of phyto-vesicles as compared to the complex, physical mixture and the β-sitosterol itself. Enhanced bioavailability of the β-sitosterol complex may be due to the amphiphilic nature of the complex, which greatly enhance the water and lipid solubility of the compound. The present study clearly indicates the superiority of phyto-vesicles over the complex and β-sitosterol, in terms of better absorption and improved activity for the treatment of alopecia.

    Topics: Absorption; Alopecia; Animals; Biological Availability; Disease Models, Animal; Drug Delivery Systems; Humans; Intestines; Male; Phosphatidylcholines; Rats; Rats, Wistar; Sitosterols; Solubility; Testosterone

2012
Time-dependent morphological and biochemical changes following cutaneous thermal burn injury and their modulation by copper nicotinate complex: an animal model.
    Ultrastructural pathology, 2012, Volume: 36, Issue:5

    Thermal tissue injury is partly mediated by reactive oxygen metabolites. Oxygen free radicals are contributory to local tissue damage following thermal injury and accordingly an interventional therapy using antioxidants may be beneficial. Copper nicotinate complex can scavenge reactive oxygen species (i.e., has antioxidant activity).. To examine time-related morphological and biochemical changes following skin thermal injury and their modulation by copper nicotinate complex.. An animal model composed of 80 albino rats was established. Ten rats (nonburn group) served as a control group. Seventy rats (burn group) were anesthetized, given a 10% total body surface area, full-thickness burn. Ten rats (from the postburn group) were sacrificed after 24 h (without treatment, i.e., untreated-burn group). The remaining rats were divided into three subgroups (20 rats, each) and were treated topically either with soft paraffin, moist exposed burn ointment (MEBO, a standard therapeutic treatment for burns), or copper nicotinate complex. Five animals from each subgroup were sacrificed every week over a period of 4 weeks. The morphological and biochemical changes were evaluated and compared among the different groups.. High levels of the plasma and skin nitiric oxide (marker of oxidative stress) were observed in the untreated-burn group. These levels were significantly low following the application of copper nicotinate complex. Low levels of plasma and skin superoxide dismutase (marker of oxidative stress) and plasma ceruloplasmin were observed in the untreated-burn group. These levels were significantly high following copper nicotinate complex treatment. The total and differential leukocyte counts were low following the onset of the thermal injury. They gradually returned to normal levels over a 4-week period following the application of MEBO or copper nicotinate complex. Compared to untreated-burn group, postburn-healing changes (resolution of the inflammatory reaction, reepithelization of the epidermis, angiogenesis, deposition of collagen fibers, and recovery of the subcellualr organelles) were significantly accelerated following the application of either MEBO or copper nicotinate complex.. Application of copper nicotinate complex was associated with improved healing of the thermal burns of the skin. The underlying molecular changes underlying these effects await further investigations.

    Topics: Animals; Biomarkers; Burns; Ceruloplasmin; Copper; Disease Models, Animal; Female; Free Radical Scavengers; Leukocytes; Neovascularization, Physiologic; Niacin; Nitric Oxide; Oxidative Stress; Paraffin; Rats; Rats, Sprague-Dawley; Sitosterols; Skin; Superoxide Dismutase; Time Factors; Wound Healing

2012
Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma.
    European journal of pharmacology, 2011, Jan-10, Volume: 650, Issue:1

    In the present study, the efficacy of β-sitosterol isolated from an n-butanol extract of the seeds of the plant Moringa oleifera (Moringaceae) was examined against ovalbumin-induced airway inflammation in guinea pigs. All animals (except group I) were sensitized subcutaneously and challenged with aerosolized 0.5% ovalbumin. The test drugs, β-sitosterol (2.5mg/kg) or dexamethasone (2.5mg/kg), were administered to the animals (p.o.) prior to challenge with ovalbumin. During the experimental period (on days 18, 21, 24 and 29), a bronchoconstriction test (0.25% acetylcholine for 30s) was performed and lung function parameters (tidal volume and respiration rate) were measured for each animal. On day 30, blood and bronchoalveolar lavaged fluid were collected to assess cellular content, and serum was collected for cytokine assays. Lung tissue was utilized for a histamine assay and for histopathology. β-sitosterol significantly increased the tidal volume (V(t)) and decreased the respiration rate (f) of sensitized and challenged guinea pigs to the level of non-sensitized control guinea pigs and lowered both the total and differential cell counts, particularly eosinophils and neutrophils, in blood and bronchoalveolar lavaged fluid. Furthermore, β-sitosterol treatment suppressed the increase in cytokine levels (TNFα, IL-4 and IL-5), with the exception of IL-6, in serum and in bronchoalveolar lavaged fluid detected in model control animals. Moreover, treatment with β-sitosterol protected against airway inflammation in lung tissue histopathology. β-sitosterol possesses anti-asthmatic actions that might be mediated by inhibiting the cellular responses and subsequent release/synthesis of Th2 cytokines. This compound may have therapeutic potential in allergic asthma.

    Topics: Acetylcholine; Animals; Anti-Asthmatic Agents; Asthma; Body Weight; Bronchial Spasm; Bronchoalveolar Lavage Fluid; Bronchoconstriction; Cell Count; Cytokines; Disease Models, Animal; Guinea Pigs; Histamine; Inflammation; Lung; Male; Ovalbumin; Respiratory System; Sitosterols; Th2 Cells

2011
Downregulation of matrix metalloproteinase-13 by the root extract of Cyathula officinalis Kuan and its constituents in IL-1β-treated chondrocytes.
    Planta medica, 2011, Volume: 77, Issue:13

    The roots of Cyathula officinalis Kuan are widely used in Chinese medicine for the treatment of inflammatory disorders. Here, the ability of C. officinalis Kuan to downregulate matrix metalloproteinase (MMP)-13 was examined since MMP-13 is an important enzyme for the degradation of the cartilage collagen matrix, especially under arthritic conditions. The ethanol extract of C. officinalis Kuan as well as the N-hexane and chloroform soluble fractions were found to potently inhibit MMP-13 induction in IL-1 β-treated SW1353 cells, a human chondrosarcoma cell line, at 50-200 µg/mL. Activity-guided separation led to the isolation of six compounds, palmitic acid (1), β-sitosterol (2), α-spinasterol (3), atractylenolide I (4), 1,3-diacetoxy-tetradeca-6E,12E-dien-8,10-dyn (5), and N-trans-feruloyl-3-methyldopamine (6). Among these, 4 and 5 exhibited MMP-13 downregulating activity in IL-1 β-treated SW1353 cells. And 4 also showed anti-oedematous activity against λ-carageenan-induced paw edema in mice at 20-200 mg/kg, p. o. The results of this study provide information that can help elucidate the action mechanism of C. officinalis Kuan. In addition, the results presented here suggest that C. officinalis Kuan and its constituents may have the potential for chondroprotection against cartilage degrading disorders.

    Topics: Acetates; Alkynes; Amaranthaceae; Animals; Carrageenan; Cartilage; Cell Line, Tumor; Chondrocytes; Chondrosarcoma; Disease Models, Animal; Dopamine; Down-Regulation; Edema; Humans; Hypolipidemic Agents; Interleukin-1beta; Lactones; Male; Matrix Metalloproteinase 13; Medicine, Chinese Traditional; Mice; Mice, Inbred ICR; Phytotherapy; Plant Extracts; Plant Roots; Sesquiterpenes; Sitosterols; Stigmasterol

2011
Cholesterol-lowering effects of plant steryl and stanyl laurate by oral administration in mice.
    Journal of agricultural and food chemistry, 2011, May-11, Volume: 59, Issue:9

    The present study was conducted to investigate the efficacy of synthesized plant steryl and stanyl laurate in lowering the cholesterol level and to further examine the cholesterol-lowering potential of the free plant sterols and stanols dissolved in liquid emulsion on serum and liver lipids in mice by oral administration. Experimental results showed that both plant steryl and stanyl laurate could significantly decrease the serum levels of TC, LDL-C, LDL-C/HDL-C, and liver cholesterol contents and markedly increase fecal cholesterol concentrations but have no effect on serum TAG level, indicating that the produced plant steryl and stanyl laurate retained the cholesterol-lowering potential of natural plant sterols and stanols. However, no statistical difference in cholesterol-lowering efficacy was observed between plant steryl laurate and plant stanyl laurate, and free plant sterols and stanols dissolved in liquid emulsion could also significantly decrease serum cholesterol levels and markedly increase fecal cholesterol excretion. These results suggested that the esterified plant sterols/stanols had comparable effects to the free plant sterols/stanols in lowering serum TC levels but that they did gain a solubility advantage from the free plant sterols/stanols. Therefore, plant steryl/stanyl laurate could be considered as a potential nutraceutical or functional ingredient to reduce or prevent atherosclerosis and its related complications.

    Topics: Administration, Oral; Animals; Anticholesteremic Agents; Cholesterol; Cholesterol, LDL; Disease Models, Animal; Humans; Hypercholesterolemia; Male; Mice; Phytosterols; Sitosterols

2011
Wound healing efficacy of Jatyadi Taila: in vivo evaluation in rat using excision wound model.
    Journal of ethnopharmacology, 2011, Oct-31, Volume: 138, Issue:1

    In traditional Indian medicinal treatise there are several Ayurvedic formulations mentioned which have been claimed as potential wound healing agents like Madhu Ghrita and Jatyadi Taila. Jatyadi Taila (JT) is a medicated oil formulation (Taila) popularly used in the treatment of various topical wounds.. Though JT has its composition recorded in ancient Ayurvedic texts, there have been minimal attempts to standardize its use in the management of wound. The current work evaluates the wound healing efficacy of JT and also provides evidence of the dermal absorption kinetics of Karanjin from JT.. JT was subjected to preliminary phytochemical evaluation. Therapeutically active marker components β-sitosterol, lupeol and karanjin were detected and separated using HPTLC. As a part of safety evaluation, skin irritation potential of JT was evaluated on rabbit skin. Excision wound model in rats were used to evaluate the wound healing efficacy of JT. Histopathological and biochemical evaluations of excised skin tissues at wound sites were carried out. The HPTLC method developed was also validated to evaluate the pharmacokinetics of Karanjin from JT after topical application on pinna of rabbit.. Preliminary phytochemical evaluation of JT revealed presence of flavonoids, essential oils, tannins, glycosides, steroids and alkaloids while resins were found to be absent. HPTLC confirmed the presence of karanjin, lupeol and β-sitosterol in JT. JT was found to be non-irritant when applied to the skin of rabbits. Topical application of JT on excision wounds caused significantly faster reduction in wound area as compared to the application of modern topical formulation (Neosporin(®)) and untreated control wounds. Animals treated with JT showed significant increase in protein, hydroxyproline and hexosamine content in the granulation tissue when compared with the untreated controls. Wound healing potential of JT was found to be dose dependant. HPTLC method was successfully used to evaluate the pharmacokinetics of Karanjin after topical application of JT on rabbit pinna.. Current work demonstrates a modern approach towards standardization of the use of traditional topical formulation JT. The results justify the traditional claim of JT for its use in the management of wounds.

    Topics: Administration, Topical; Amines; Animals; Bacitracin; Benzopyrans; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Combinations; Female; Granulation Tissue; Hydroxyproline; Male; Medicine, Ayurvedic; Neomycin; Pentacyclic Triterpenes; Phytotherapy; Plant Extracts; Polymyxin B; Proteins; Rabbits; Rats; Rats, Wistar; Sitosterols; Skin; Wound Healing; Wounds and Injuries

2011
Tribulosin suppresses apoptosis via PKC epsilon and ERK1/2 signaling pathway during hypoxia/reoxygenation in neonatal rat ventricular cardiac myocytes.
    Journal of Asian natural products research, 2011, Volume: 13, Issue:12

    Tribulosin (tigogenin 3-O-β-D-xylopyranosyl(1-2)-[β-D-xylopyranosyl (1-3)]-β-D-glucopyranosyl (1-4)-[a-L-rhamnopyranosyl(1-2)]-β-D-galactopyranoside), a component of gross saponins of Tribulus terrestris, has been shown to produce cytoprotective effects in heart. Yet, the precise mechanisms are not fully understood. We examined the mechanisms of tribulosin on myocardial protection. Ventricular myocytes were isolated from the heart of neonatal rats and were exposed to 3 h of hypoxia followed by 2 h reoxygenation. Apoptosis was induced by hypoxia/reoxygenation (H/R), and the expression of protein kinase C epsilon (PKCϵ) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured neonatal rat cardiac myocytes was detected. The results indicated that treatment with tribulosin in the culture medium protected cardiac myocytes against apoptosis induced by H/R. PKCϵ and ERK1/2 expression increased after pretreated with tribulosin. In the presence of PKCϵ inhibitor co-treated with tribulosin, the expression of ERK1/2 was decreased in H/R cardiac myocytes. While preconditioned with PD98059, ERK1/2 inhibitor, no effects on the expression of PKCϵ were detected. Tribulosin has protective effects on cardiac myocytes against apoptosis induced by H/R injury via PKCϵ and ERK1/2 signaling pathway.

    Topics: Animals; Animals, Newborn; Apoptosis; Disease Models, Animal; Hypoxia; Male; Mitogen-Activated Protein Kinase 3; Myocytes, Cardiac; Protein Kinase C-epsilon; Rats; Rats, Wistar; Sitosterols; Tribulus

2011
The mouse mutation "thrombocytopenia and cardiomyopathy" (trac) disrupts Abcg5: a spontaneous single gene model for human hereditary phytosterolemia/sitosterolemia.
    Blood, 2010, Feb-11, Volume: 115, Issue:6

    The spontaneous mouse mutation "thrombocytopenia and cardiomyopathy" (trac) causes macrothrombocytopenia, prolonged bleeding times, anemia, leukopenia, infertility, cardiomyopathy, and shortened life span. Homozygotes show a 20-fold decrease in platelet numbers and a 3-fold increase in platelet size with structural alterations and functional impairments in activation and aggregation. Megakaryocytes in trac/trac mice are present in increased numbers, have poorly developed demarcation membrane systems, and have decreased polyploidy. The thrombocytopenia is not intrinsic to defects at the level of hematopoietic progenitor cells but is associated with a microenvironmental abnormality. The trac mutation maps to mouse chromosome 17, syntenic with human chromosome 2p21-22. A G to A mutation in exon 10 of the adenosine triphosphate (ATP)-binding cassette subfamily G, member 5 (Abcg5) gene, alters a tryptophan codon (UGG) to a premature stop codon (UAG). Crosses with mice doubly transgenic for the human ABCG5 and ABCG8 genes rescued platelet counts and volumes. ABCG5 and ABCG8 form a functional complex that limits dietary phytosterol accumulation. Phytosterolemia in trac/trac mice confirmed a functional defect in the ABCG5/ABCG8 transport system. The trac mutation provides a new clinically significant animal model for human phytosterolemia and provides a new means for studying the role of phytosterols in hematologic diseases and testing therapeutic interventions.

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily G, Member 5; ATP Binding Cassette Transporter, Subfamily G, Member 8; ATP-Binding Cassette Transporters; Bleeding Time; Cardiomyopathies; Cells, Cultured; Colony-Forming Units Assay; Crosses, Genetic; Disease Models, Animal; Female; Fetus; Lipid Metabolism, Inborn Errors; Lipoproteins; Liver; Male; Megakaryocytes; Mice; Mice, Inbred A; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Mutation; Phytosterols; Sitosterols; Thrombocytopenia

2010
Chemopreventive potential of beta-Sitosterol in experimental colon cancer model--an in vitro and In vivo study.
    BMC complementary and alternative medicine, 2010, Jun-04, Volume: 10

    Asclepias curassavica Linn. is a traditional medicinal plant used by tribal people in the western ghats, India, to treat piles, gonorrhoea, roundworm infestation and abdominal tumours. We have determined the protective effect of beta-sitosterol isolated from A. curassavica in colon cancer, using in vitro and in vivo models.. The active molecule was isolated, based upon bioassay guided fractionation, and identified as beta-sitosterol on spectral evidence. The ability to induce apoptosis was determined by its in vitro antiradical activity, cytotoxic studies using human colon adenocarcinoma and normal monkey kidney cell lines, and the expression of beta-catenin and proliferating cell nuclear antigen (PCNA) in human colon cancer cell lines (COLO 320 DM). The chemopreventive potential of beta-sitosterol in colon carcinogenesis was assessed by injecting 1,2-dimethylhydrazine (DMH, 20 mg/kg b.w.) into male Wistar rats and supplementing this with beta-sitosterol throughout the experimental period of 16 weeks at 5, 10, and 20 mg/kg b.w.. beta-sitosterol induced significant dose-dependent growth inhibition of COLO 320 DM cells (IC50 266.2 microM), induced apoptosis by scavenging reactive oxygen species, and suppressed the expression of beta-catenin and PCNA antigens in human colon cancer cells. beta-sitosterol supplementation reduced the number of aberrant crypt and crypt multiplicity in DMH-initiated rats in a dose-dependent manner with no toxic effects.. We found doses of 10-20 mg/kg b.w. beta-sitosterol to be effective for future in vivo studies. beta-sitosterol had chemopreventive potential by virtue of its radical quenching ability in vitro, with minimal toxicity to normal cells. It also attenuated beta-catenin and PCNA expression, making it a potential anticancer drug for colon carcinogenesis.

    Topics: Adenocarcinoma; Animals; Antineoplastic Agents, Phytogenic; Antioxidants; Apoptosis; Asclepias; beta Catenin; Cell Line; Cell Line, Tumor; Colon; Colonic Neoplasms; Disease Models, Animal; Dose-Response Relationship, Drug; Haplorhini; Humans; Kidney; Male; Phytotherapy; Plant Extracts; Proliferating Cell Nuclear Antigen; Rats; Rats, Wistar; Sitosterols

2010
Plant sterols cause macrothrombocytopenia in a mouse model of sitosterolemia.
    The Journal of biological chemistry, 2008, Mar-07, Volume: 283, Issue:10

    Mutations in either ABCG5 or ABCG8 cause sitosterolemia, an inborn error of metabolism characterized by high plasma plant sterol concentrations. Recently, macrothrombocytopenia was described in a number of sitosterolemia patients, linking hematological dysfunction to disturbed sterol metabolism. Here, we demonstrate that macrothrombocytopenia is an intrinsic feature of murine sitosterolemia. Abcg5-deficient (Abcg5(-/-)) mice showed a 68% reduction in platelet count, and platelets were enlarged compared with wild-type controls. Macrothrombocytopenia was not due to decreased numbers of megakaryocytes or their progenitors, but defective megakaryocyte development with deterioration of the demarcation membrane system was evident. Lethally irradiated wild-type mice transplanted with bone marrow from Abcg5(-/-) mice displayed normal platelets, whereas Abcg5(-/-) mice transplanted with wild-type bone marrow still showed macrothrombocytopenia. Treatment with the sterol absorption inhibitor ezetimibe rapidly reversed macrothrombocytopenia in Abcg5(-/-) mice concomitant with a strong decrease in plasma plant sterols. Thus, accumulation of plant sterols is responsible for development of macrothrombocytopenia in sitosterolemia, and blocking intestinal plant sterol absorption provides an effective means of treatment.

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily G, Member 5; ATP Binding Cassette Transporter, Subfamily G, Member 8; ATP-Binding Cassette Transporters; Blood Platelets; Bone Marrow Transplantation; Cell Size; Disease Models, Animal; Intestinal Absorption; Lipid Metabolism, Inborn Errors; Lipoproteins; Megakaryocytes; Mice; Mice, Knockout; Platelet Count; Sitosterols; Thrombocytopenia

2008
Increased plant sterol and stanol levels in brain of Watanabe rabbits fed rapeseed oil derived plant sterol or stanol esters.
    The British journal of nutrition, 2007, Volume: 98, Issue:5

    Foods containing plant sterol or stanol esters can be beneficial in lowering LDL-cholesterol concentration, a major risk factor for CVD. The present study examined whether high dietary intake of rapeseed oil (RSO) derived plant sterol and stanol esters is associated with increased levels of these components in brain tissue of homozygous and heterozygous Watanabe rabbits, an animal model for familial hypercholesterolemia. Homozygous animals received either a standard diet, RSO stanol or RSO sterol ester while heterozygous animals were additionally fed with 2 g cholesterol/kg to the respective diet form for 120 d (n 9 for each group). Concentrations of cholesterol, its precursor lathosterol, plant sterols and stanols in brain and additionally in liver and plasma were determined by highly sensitive GC-MS. High-dose intake of RSO derived plant sterols and stanols resulted in increased levels of these components in plasma and liver. In brain a limited uptake of plant sterols and stanols was proven, indicating that these compounds passed the blood-brain barrier and may be retained in the brain tissue of Watanabe rabbits. Plant stanol ester feeding lowered plant sterol levels in brain, liver, and plasma. Cholesterol synthesis in brain, indicated by lathosterol, a local surrogate cholesterol synthesis marker, does not seem to be affected by plant sterol or stanol ester feeding. We conclude that high dose intake of plant sterol and stanol esters in Watanabe rabbits results in elevated concentrations of these components not only in the periphery but also in the central nervous system.

    Topics: Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Blood-Brain Barrier; Brain; Cholesterol; Disease Models, Animal; Fatty Acids, Monounsaturated; Female; Heterozygote; Homozygote; Hyperlipoproteinemia Type II; Liver; Male; Phytosterols; Plant Oils; Rabbits; Rapeseed Oil; Sitosterols

2007
Comparative health effects of margarines fortified with plant sterols and stanols on a rat model for hemorrhagic stroke.
    Lipids, 2003, Volume: 38, Issue:12

    There is increased acceptance of fortifying habitual foods with plant sterols and their saturated derivatives, stanols, at levels that are considered safe. These sterols and stanols are recognized as potentially effective dietary components for lowering plasma total and LDL cholesterol. Our previous studies have shown that daily consumption of plant sterols promotes strokes and shortens the life span of stroke-prone spontaneously hypertensive (SHRSP) rats. These studies question the safety of plant sterol additives. The present study was performed to determine whether a large intake of plant stanols would cause nutritional effects similar to those seen with plant sterols in SHRSP rats. Young SHRSP rats (aged 26-29 d) were fed semipurified diets containing commercial margarines fortified with either plant stanols (1.1 g/100 g diet) or plant sterols (1.4 g/100 g diet). A reference group of SHRSP rats was fed a soybean oil diet (0.02 g plant sterols/100 g diet and no plant stanols). Compared to soybean oil, both plant stanol and plant sterol margarines significantly (P < 0.05) reduced the life span of SHRSP rats. At the initial stages of feeding, there was no difference in the survival rates between the two margarine groups, but after approximately 50 d of feeding, the plant stanol group had a slightly, but significantly (P < 0.05), lower survival rate. Blood and tissue (plasma, red blood cells, liver, and kidney) concentrations of plant sterols in the plant sterol margarine group were three to four times higher than the corresponding tissue concentrations of plant stanols in the plant stanol group. The deformability of red blood cells and the platelet count of SHRSP rats fed the plant sterol margarine were significantly (P < 0.05) lower than those of the plant stanol margarine and soybean oil groups at the end of the study. These parameters did not differ between the soybean oil and plant stanol margarine groups. These results suggest that, at the levels tested in the present study, plant stanols provoke hemorrhagic stroke in SHRSP rats to a slightly greater extent than plant sterols. The results also suggest that the mechanism by which plant stanols shorten the life span of SHRSP rats might differ from that of plant sterols.

    Topics: Animals; Cerebral Hemorrhage; Disease Models, Animal; Erythrocyte Deformability; Erythrocytes; Food, Fortified; Growth; Kidney; Leukocyte Count; Liver; Margarine; Phytosterols; Rats; Rats, Inbred SHR; Sitosterols; Survival Analysis

2003
Effect of Withania somnifera glycowithanolides on a rat model of tardive dyskinesia.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2002, Volume: 9, Issue:2

    Withania somnifera glycowithanolides (WSG) were investigated for their preventive effect on the animal model of tardive dyskinesia (TD), induced by once daily administration of the neuroleptic, haloperidol (1.5 mg/kg, i.p.), for 28 days. Involuntary orofacial movements (chewing movements, tongue protusion and buccal tremors) were assessed as TD parameters. WSG (100 and 200 mg, p.o.), administered concomitantly with haloperidol for 28 days, inhibited the induction of the neuroleptic TD. Haloperidol-induced TD was also attenuated by the antioxidant, vitamin E (400 and 800 mg/kg, p.o.), but remained unaffected by the GABA-mimetic antiepileptic agent, sodium valproate (200 and 400 mg/kg, p.o.), both agents being administered for 28 days like WSG. The results indicate that the reported antioxidant effect of WSG, rather than its GABA-mimetic action, may be responsible for the prevention of haloperidol-induced TD.

    Topics: Animals; Anti-Dyskinesia Agents; Anticonvulsants; Antioxidants; Disease Models, Animal; Dyskinesia, Drug-Induced; Ergosterol; Glycosides; Haloperidol; Male; Phytotherapy; Plant Extracts; Plant Roots; Rats; Rats, Wistar; Sitosterols; Solanaceae; Valproic Acid; Vitamin E; Withanolides

2002
Dietary sitostanol reciprocally influences cholesterol absorption and biosynthesis in hamsters and rabbits.
    Atherosclerosis, 1999, Volume: 143, Issue:2

    The aim of this study was to examine the efficacy of variable dietary sitostanol (SI) concentrations on cholesterol absorption, synthesis and excretion rates in two animal models. Hamsters and rabbits were fed semi-purified diets supplemented with cholesterol and 1% (w/w) phytosterols containing either 0.007, 0.17, 0.8 or 1% (w/w) SI. The control (0% (w/w) SI) groups consumed the same diets but no phytosterols were added. The dual-isotope plasma ratio of [13C]- and [18O]cholesterol and deuterium incorporation methods were applied to measure simultaneously cholesterol absorption and fractional synthesis, respectively. Plasma total cholesterol levels were lower in rabbits and hamsters fed 0.8 and 1% (w/w) SI, respectively, as compared to their controls. Percent cholesterol absorption was lower (P = 0.03) in hamsters fed 1% (w/w) SI (42.5 +/- 13.3%) than control (65.1 +/- 13.4%). Moreover, cholesterol excretion in the feces was 77 and 57% higher (P = 0.017) in the 1% (w/w) SI- relative to control- and 0.17% (w/w) SI-fed groups, respectively. In rabbits, cholesterol excretion was 64% higher (P = 0.018) in 0.8% (w/w) SI- compared with control-fed groups. Fractional synthesis rate was higher (P = 0.033) in hamsters fed 1% (w/w) SI (0.116 +/- 0.054 pool day(-1)) as compared to control (0.053 +/- 0.034 pool day(-1)). However, cholesterol synthesis rates did not vary among groups fed variable concentrations of SI. In rabbits, percent cholesterol absorption and its fractional synthesis rate varied but did not reach significance. Fractional synthesis rate in hamsters was correlated (r = -0.32, P = 0.03) with percent cholesterol absorption. In conclusion, dietary SI exhibited a dose-dependent action in inhibiting cholesterol absorption while increasing cholesterol excretion and upregulating cholesterogenesis in hamsters resulting in lower circulating lipid levels.

    Topics: Analysis of Variance; Animals; Anticholesteremic Agents; Cholesterol; Cholesterol, Dietary; Cricetinae; Disease Models, Animal; Dose-Response Relationship, Drug; Feces; Lipids; Male; Phytosterols; Rabbits; Reference Values; Sitosterols; Species Specificity

1999
Study of the topical anti-inflammatory activity of Achillea ageratum on chronic and acute inflammation models.
    Zeitschrift fur Naturforschung. C, Journal of biosciences, 1999, Volume: 54, Issue:11

    We have produced a chloroform extract from Achillea which includes stigmasterol and sitosterol. By comparing it with the pure compounds an anti-inflammatory effect (with mouse ears) is assumed. The topical anti-inflammatory effect of the chloroform extract from Achillea ageratum (Asteraceae) and of stigmasterol and beta-sitosterol, isolated of this extract has been evaluated, against to 12-0-tetradecanoylphorbol acetate (TPA)-induced mouse ear edema, using simple (acute model) and multiple applications (chronic model) of the phlogistic agent. Myeloperoxydase activity also was studied in the inflamed ears. In the acute model the extract exerted a dose-dependent effect. All the doses assayed (1, 3 and 5 mg/ear) significantly reduced the edema (50%, 66% and 82%, respectively). The isolated sterols stigmasterol and beta-sitosterol (with doses of 0.5 mg/ear) had similar effect as the extract with doses of 1 and 3 mg (59% and 65% respectively). In the chronic model the anti-inflammatory effect generally was a more moderate one. The highest dose of the extract decreased the edema reduction to 26% with the highest dose of the extract applied. With the compounds the effect decreased to 36% with stigmasterol, and 40.6% with beta-sitosterol. Myeloperoxydase activity (MPO) was reduced by the extract and the compounds in the acute model, however, in the chronic edema, the enzyme inhibition was very weak with all treatments even with the standard substance. These results indicate that the chloroform extract of Achillea ageratum and some of the its components stigmasterol and beta-sitosterol are more effective as topical anti-inflammatory agents in acute than in the chronic process and their action is markedly influenced by the inhibition of neutrophil migration into inflamed tissue.

    Topics: Acute Disease; Animals; Anti-Inflammatory Agents; Chloroform; Chronic Disease; Dexamethasone; Disease Models, Animal; Ear; Edema; Indomethacin; Mice; Peroxidase; Plant Extracts; Plants, Medicinal; Sitosterols; Stigmasterol; Tetradecanoylphorbol Acetate

1999
Effect of sitosterol on the rate-limiting enzymes in cholesterol synthesis and degradation.
    Lipids, 1989, Volume: 24, Issue:1

    Attempts were made to develop an animal model for phytosterolemia. Infusion of Intralipid containing 0.2% sitosterol in rats gave circulating levels of sitosterol of about 2.5 mmol/l, which is similar to or higher than those present in patients with untreated phytosterolemia. In addition, the infusions gave serum levels of cholesterol nearly twice those obtained in rats infused with Intralipid alone or Intralipid containing 0.2% cholesterol. The hepatic HMG-CoA reductase activity was unaffected or slightly increased by the sitosterol infusions (not statistically significant). The cholesterol 7 alpha-hydroxylase activity was slightly depressed (ca. 30%). In the case of 7 alpha-hydroxylation of endogenous cholesterol, the depression reached statistical significance (p less than 0.05). The microsomal content of sitosterol in the sitosterol-infused rats was about 30% of that of microsomal cholesterol. The effect of sitosterol on 7 alpha-hydroxylation of cholesterol was investigated by incubations of acetone powder of rat liver microsomes with mixtures of cholesterol and sitosterol. Sitosterol mixed with cholesterol to a composition similar to that found in the above microsomal fraction had a depressing effect on 7 alpha-hydroxylation of cholesterol. This degree of depression was of the same magnitude as that found in the sitosterol infusion experiments. The possibility is discussed that the hypercholesterolemia obtained in the beta-sitosterol-infused rats is due to the inhibitory effect of sitosterol on the cholesterol 7 alpha-hydroxylase.

    Topics: Animals; Cholesterol; Cholesterol 7-alpha-Hydroxylase; Disease Models, Animal; Hydroxymethylglutaryl CoA Reductases; Hypercholesterolemia; Male; Microsomes, Liver; Phytosterols; Rats; Rats, Inbred Strains; Sitosterols; Steroid Hydroxylases

1989