cytellin and Cardiomyopathies

cytellin has been researched along with Cardiomyopathies* in 2 studies

Other Studies

2 other study(ies) available for cytellin and Cardiomyopathies

ArticleYear
Cholesterol metabolism in cardiac sarcoidosis.
    Atherosclerosis, 2016, Volume: 248

    Patients with cardiac sarcoidosis (CS) suffer from myocardial inflammation, but atherosclerosis is not infrequent in these patients. However, the classical atherosclerotic risk factors, such as perturbed serum lipids and whole-body cholesterol metabolism, remain unravelled in CS.. We assessed serum non-cholesterol sterols, biomarkers of whole-body cholesterol synthesis and cholesterol absorption efficiency, with gas-liquid chromatography in 39 patients with histologically verified CS and in an age-adjusted random population sample (n = 124).. CS was inactive or responding to treatment in all patients. Concentrations of serum, LDL, and HDL cholesterol and serum triglycerides were similar in CS patients and in control subjects. Cholesterol absorption markers were higher in CS patients than in controls (eg serum campesterol to cholesterol ratio in CS 246 ± 18 vs in controls 190 ± 8 10(2) x μmol/mmol of cholesterol, p = 0.001). Cholesterol synthesis markers were lower in CS patients than in controls (eg serum lathosterol to cholesterol ratio in CS 102 ± 8 vs in controls 195 ± 5 10(2) x μmol/mmol of cholesterol, p = 0.000). In CS patients, cholesterol absorption markers significantly correlated with plasma prohormone brain natriuretic peptide (proBNP), a marker of hemodynamic load.. High cholesterol absorption efficiency, which is suggested to be atherogenic, characterized the metabolic profile of cholesterol in CS patients. The association between cholesterol absorption efficiency and plasma proBNP concentration, which suggests a link between inflammation, cholesterol homeostasis, and hemodynamic load, warrants further studies in order to confirm this finding and to reveal the underlying mechanisms.

    Topics: Adult; Aged; Atherosclerosis; Body Mass Index; Cardiomyopathies; Case-Control Studies; Cholesterol; Cholesterol, HDL; Cholesterol, LDL; Diet; Down-Regulation; Female; Finland; Heart Diseases; Hemodynamics; Homeostasis; Humans; Inflammation; Lipoproteins; Male; Middle Aged; Phytosterols; Risk Factors; Sarcoidosis; Sitosterols

2016
The mouse mutation "thrombocytopenia and cardiomyopathy" (trac) disrupts Abcg5: a spontaneous single gene model for human hereditary phytosterolemia/sitosterolemia.
    Blood, 2010, Feb-11, Volume: 115, Issue:6

    The spontaneous mouse mutation "thrombocytopenia and cardiomyopathy" (trac) causes macrothrombocytopenia, prolonged bleeding times, anemia, leukopenia, infertility, cardiomyopathy, and shortened life span. Homozygotes show a 20-fold decrease in platelet numbers and a 3-fold increase in platelet size with structural alterations and functional impairments in activation and aggregation. Megakaryocytes in trac/trac mice are present in increased numbers, have poorly developed demarcation membrane systems, and have decreased polyploidy. The thrombocytopenia is not intrinsic to defects at the level of hematopoietic progenitor cells but is associated with a microenvironmental abnormality. The trac mutation maps to mouse chromosome 17, syntenic with human chromosome 2p21-22. A G to A mutation in exon 10 of the adenosine triphosphate (ATP)-binding cassette subfamily G, member 5 (Abcg5) gene, alters a tryptophan codon (UGG) to a premature stop codon (UAG). Crosses with mice doubly transgenic for the human ABCG5 and ABCG8 genes rescued platelet counts and volumes. ABCG5 and ABCG8 form a functional complex that limits dietary phytosterol accumulation. Phytosterolemia in trac/trac mice confirmed a functional defect in the ABCG5/ABCG8 transport system. The trac mutation provides a new clinically significant animal model for human phytosterolemia and provides a new means for studying the role of phytosterols in hematologic diseases and testing therapeutic interventions.

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily G, Member 5; ATP Binding Cassette Transporter, Subfamily G, Member 8; ATP-Binding Cassette Transporters; Bleeding Time; Cardiomyopathies; Cells, Cultured; Colony-Forming Units Assay; Crosses, Genetic; Disease Models, Animal; Female; Fetus; Lipid Metabolism, Inborn Errors; Lipoproteins; Liver; Male; Megakaryocytes; Mice; Mice, Inbred A; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Mutation; Phytosterols; Sitosterols; Thrombocytopenia

2010