cysteine and Malaria

cysteine has been researched along with Malaria in 22 studies

Research

Studies (22)

TimeframeStudies, this research(%)All Research%
pre-19902 (9.09)18.7374
1990's1 (4.55)18.2507
2000's5 (22.73)29.6817
2010's10 (45.45)24.3611
2020's4 (18.18)2.80

Authors

AuthorsStudies
Kappe, SHI; Kumar, S; Leeb, AS; Vaughan, AM1
Adair, A; Chan, LJ; Cowman, AF; Dietrich, MH; Dixon, MWA; Gabriela, M; Healer, J; Keremane, S; Lopaticki, S; O'Neill, MT; Reaksudsan, K; Tan, LL; Tham, WH; Trickey, S1
Iriko, H; Ishino, T; Ito, D; Kaneko, O; Kondo, Y; Otsuki, H; Tachibana, M; Torii, M; Tsuboi, T1
Barfod, LK; Campeotto, I; Draper, SJ; Galaway, F; Higgins, MK; Kotraiah, V; Mehmood, S; Phares, TW; Quinkert, D; Snijders, AP; Wright, GJ; Wright, KE1
Adebayo, JO; Adewole, KE1
Bridgford, JL; Chen, MZ; Hatters, DM; Hong, Y; Moily, NS; Pouladi, MA; Radwan, M; Reid, GE; Smith, TA; Song, Z; Tang, BZ; Tilley, L; Wood, RJ; Xu, X1
Annoura, T; Chevalley-Maurel, S; Dinmohamed, AG; Franetich, JF; Franke-Fayard, B; Gego, A; Hermsen, CC; Hoffman, SL; Inaoka, DK; Janse, CJ; Khan, SM; Kiełbasa, SM; Kita, K; Klop, O; Lin, JW; Mazier, D; Ploemen, IH; Rijpma, SR; Sajid, M; Sauerwein, RW; Scheltinga, F; van Gemert, GJ; van Schaijk, BC; Vos, MW1
Al-Khattaf, FS; Dessens, JT; El-Houderi, A; Tremp, AZ1
Balan, B; Beri, D; Chaubey, S; Subramaniam, S; Surendra, B; Tatu, U1
Harada, S; Hirayama, K; Huy, NT; Kamei, K; Nhien, NT; Oida, T; Trang, DT; Uyen, DT1
Deechongkit, S; Kamolkijkarn, P; Netirojjanakul, C; Prasertdee, T; Ruchirawat, S; Sarnpitak, P1
Chanama, M; Chanama, S; Chitnumsub, P; Leartsakulpanich, U; Shaw, PJ; Yuthavong, Y1
Alam, A; Bandyopadhyay, U; Bindu, S; Dey, S; Ghoshal, N; Goyal, M; Iqbal, MS; Maity, P; Mascarenhas, NM; Pal, C1
Augustijn, KD; Douradinha, B; Janse, CJ; Moore, SG; Mota, MM; Ramesar, J; Thompson, J; Waters, AP1
Dekumyoy, P; Kajla, MK; Komalamisra, N; Lapcharoen, P; Paskewitz, SM; Prachumsri, J; Rongsriyam, Y; Wangsuphachart, V1
Graciet, E; Hu, RG; Piatkov, K; Rhee, JH; Schwarz, EM; Varshavsky, A1
Langhorne, J; Marsh, K; Ndungu, FM; Newbold, CI; Sanni, L; Stephens, R; Urban, B1
Blackman, MJ; Dodson, GG; Hackett, F; Haire, LF; Howell, SA; Smerdon, SJ; Walker, PA; Withers-Martinez, C1
Adams, JH; Kaneko, O; Michon, P; Stevens, JR1
Hempelmann, E; Jackisch, R; Jung, A; Krämmer, G; Picard-Maureau, A1
Adams, JH; Dolan, SA; Fang, X; Kaslow, DC; Miller, LH; Sim, BK1
Burns, JM; Daly, TM; Long, CA; Majarian, WR; Young, JF1

Other Studies

22 other study(ies) available for cysteine and Malaria

ArticleYear
Plasmodium falciparum Cysteine Rich Secretory Protein uniquely localizes to one end of male gametes.
    Molecular and biochemical parasitology, 2022, Volume: 248

    Topics: Animals; Cysteine; Germ Cells; Humans; Life Cycle Stages; Malaria; Malaria, Falciparum; Male; Mosquito Vectors; Parasites; Plasmodium falciparum

2022
Nanobodies against Pfs230 block Plasmodium falciparum transmission.
    The Biochemical journal, 2022, 12-22, Volume: 479, Issue:24

    Topics: Animals; Antibodies, Protozoan; Antigens, Protozoan; Cysteine; Humans; Malaria; Plasmodium falciparum; Protozoan Proteins; Single-Domain Antibodies

2022
Cysteine Residues in Region 6 of the
    Biomolecules, 2023, 03-02, Volume: 13, Issue:3

    Topics: Amino Acid Sequence; Animals; Cell Adhesion Molecules; Cysteine; Erythrocytes; Ligands; Malaria; Mice; Parasitemia; Plasmodium yoelii; Protozoan Proteins

2023
The Structure of the Cysteine-Rich Domain of Plasmodium falciparum P113 Identifies the Location of the RH5 Binding Site.
    mBio, 2020, 09-08, Volume: 11, Issue:5

    Topics: Animals; Antibodies, Monoclonal; Binding Sites; Carrier Proteins; Cysteine; Erythrocytes; Female; Malaria; Mice; Plasmodium falciparum; Protein Binding; Protein Domains; Protozoan Proteins

2020
Antioxidant defense system induced by cysteine-stabilized peptide fraction of aqueous extract of Morinda lucida leaf in selected tissues of Plasmodium berghei-infected mice.
    Journal of integrative medicine, 2017, Volume: 15, Issue:5

    Topics: Animals; Antioxidants; Catalase; Cysteine; Glutathione; Malaria; Malondialdehyde; Mice; Morinda; Oxidative Stress; Peptides; Plant Extracts; Plant Leaves; Plasmodium berghei; Superoxide Dismutase

2017
A thiol probe for measuring unfolded protein load and proteostasis in cells.
    Nature communications, 2017, 09-07, Volume: 8, Issue:1

    Topics: Animals; Artemisinins; Cells; Cysteine; Fluorescent Dyes; HEK293 Cells; HeLa Cells; Humans; Huntingtin Protein; Malaria; Maleimides; Mice; Molecular Probes; Mutant Proteins; Oligopeptides; Parasites; Protein Folding; Proteome; Proteostasis; Solubility; Sulfhydryl Compounds; Tunicamycin

2017
Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2014, Volume: 28, Issue:5

    Topics: Animals; Cell Line; Computational Biology; Cysteine; Female; Gene Expression Regulation; Genotype; Green Fluorescent Proteins; Hepatocytes; Malaria; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mutation; Phenotype; Plasmodium; Plasmodium berghei; Plasmodium falciparum; Plasmodium yoelii; Protein Biosynthesis; Protozoan Proteins; Sporozoites

2014
The Plasmodium alveolin IMC1a is stabilised by its terminal cysteine motifs and facilitates sporozoite morphogenesis and infectivity in a dose-dependent manner.
    Molecular and biochemical parasitology, 2017, Volume: 211

    Topics: Amino Acid Motifs; Amino Acid Sequence; Animals; Cysteine; Female; Malaria; Mice; Morphogenesis; Mutation; Phenotype; Plasmodium; Protein Domains; Protein Stability; Protozoan Proteins; Sporozoites

2017
A disrupted transsulphuration pathway results in accumulation of redox metabolites and induction of gametocytogenesis in malaria.
    Scientific reports, 2017, 01-16, Volume: 7

    Topics: Animals; Culture Media; Cystathionine; Cysteine; Disease Models, Animal; Erythrocytes; Glutathione; Homocysteine; Humans; Malaria; Mass Spectrometry; Metabolic Networks and Pathways; Mice; Oxidation-Reduction; Plasmodium falciparum; Protozoan Proteins; Sulfur; Transcription Factors; Transcriptional Activation

2017
Effects of amino acids on malarial heme crystallization.
    Biological & pharmaceutical bulletin, 2008, Volume: 31, Issue:8

    Topics: Amino Acids; Chemical Phenomena; Chemistry, Physical; Crystallization; Cysteine; Heme; Hemeproteins; Hemin; Humans; Hydrogen-Ion Concentration; Kinetics; Malaria; Polysorbates; Solutions; Surface Tension; Surface-Active Agents

2008
Synthesis, biophysical, and biological studies of wild-type and mutant psalmopeotoxins--anti-malarial cysteine knot peptides from Psalmopoeus cambridgei.
    Peptides, 2010, Volume: 31, Issue:4

    Topics: Amino Acid Sequence; Animals; Antimalarials; Cysteine; Cystine Knot Motifs; Disulfides; Malaria; Models, Molecular; Molecular Sequence Data; Peptides; Protein Conformation; Sequence Alignment; Spider Venoms; Spiders

2010
Formation of catalytically active cross-species heterodimers of thymidylate synthase from Plasmodium falciparum and Plasmodium vivax.
    Molecular biology reports, 2011, Volume: 38, Issue:2

    Topics: Arginine; Catalysis; Catalytic Domain; Cysteine; Dimerization; Genetic Complementation Test; Humans; Kinetics; Malaria; Mutation; Plasmids; Plasmodium falciparum; Plasmodium vivax; Species Specificity; Thymidylate Synthase

2011
Cysteine-3 and cysteine-4 are essential for the thioredoxin-like oxidoreductase and antioxidant activities of Plasmodium falciparum macrophage migration inhibitory factor.
    Free radical biology & medicine, 2011, Jun-01, Volume: 50, Issue:11

    Topics: Animals; Arsenicals; Computational Biology; Cysteine; DNA Damage; Enzyme Activation; Erythrocytes; Macrophage Migration-Inhibitory Factors; Malaria; Mutagenesis, Site-Directed; Mutation; Oxidative Stress; Oxidoreductases; Plasmodium falciparum; Protozoan Proteins; Rabbits; Stereoisomerism; Thioredoxins

2011
Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host.
    Malaria journal, 2011, Mar-31, Volume: 10

    Topics: Amino Acid Sequence; Animals; Culicidae; Cysteine; Hep G2 Cells; Hepatocytes; Humans; Life Cycle Stages; Malaria; Mice; Molecular Sequence Data; Oocysts; Plasmodium berghei; Protozoan Proteins; Sequence Alignment; Sporozoites

2011
Investigations on the role of a lysozyme from the malaria vector Anopheles dirus during malaria parasite development.
    Developmental and comparative immunology, 2012, Volume: 36, Issue:1

    Topics: Amino Acid Sequence; Animals; Anopheles; Conserved Sequence; Cysteine; Female; Gene Knockdown Techniques; Insect Proteins; Insect Vectors; Larva; Malaria; Molecular Sequence Data; Muramidase; Plasmodium berghei; Salivary Glands

2012
Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen.
    Proceedings of the National Academy of Sciences of the United States of America, 2006, Feb-28, Volume: 103, Issue:9

    Topics: Amino Acid Sequence; Aminoacyltransferases; Conserved Sequence; Cysteine; Eukaryotic Cells; Evolution, Molecular; Half-Life; Humans; Malaria; Models, Biological; Phylogeny; Prokaryotic Cells; Tyrosine; Vibrio vulnificus

2006
CD4 T cells from malaria-nonexposed individuals respond to the CD36-Binding Domain of Plasmodium falciparum erythrocyte membrane protein-1 via an MHC class II-TCR-independent pathway.
    Journal of immunology (Baltimore, Md. : 1950), 2006, May-01, Volume: 176, Issue:9

    Topics: Adult; Animals; Antigens, CD; Antigens, Differentiation, T-Lymphocyte; CD36 Antigens; CD4-Positive T-Lymphocytes; Cell Division; Cells, Cultured; Cysteine; Dendritic Cells; Histocompatibility Antigens Class II; Humans; Interferon-gamma; Killer Cells, Natural; Lectins, C-Type; Malaria; Plasmodium falciparum; Protein Binding; Protozoan Proteins; Receptors, Antigen, T-Cell

2006
Malarial EBA-175 region VI crystallographic structure reveals a KIX-like binding interface.
    Journal of molecular biology, 2008, Jan-18, Volume: 375, Issue:3

    Topics: Amino Acid Sequence; Animals; Antigens, Protozoan; Binding Sites; Crystallography, X-Ray; Cysteine; Dimerization; Disulfides; Duffy Blood-Group System; Erythrocytes; Humans; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Malaria; Models, Molecular; Molecular Sequence Data; Molecular Weight; Plasmodium falciparum; Protein Binding; Protein Folding; Protein Structure, Secondary; Protein Structure, Tertiary; Protozoan Proteins; Sequence Homology, Amino Acid; Water

2008
Evolutionary relationships of conserved cysteine-rich motifs in adhesive molecules of malaria parasites.
    Molecular biology and evolution, 2002, Volume: 19, Issue:7

    Topics: Amino Acid Sequence; Animals; Antigens, Protozoan; Binding Sites; Blotting, Southern; Carrier Proteins; Cell Adhesion; Cloning, Molecular; Cysteine; DNA Primers; Duffy Blood-Group System; Erythrocytes; Evolution, Molecular; Humans; Malaria; Molecular Sequence Data; Phylogeny; Plasmodium knowlesi; Plasmodium vivax; Polymerase Chain Reaction; Protein Binding; Protozoan Proteins; Receptors, Cell Surface; Sequence Homology, Amino Acid

2002
[Glutathionestatus of Plasmodium vinckei parasitized erythrocytes in correlation to the intraerythrocytic development of the parasite (author's transl)].
    Tropenmedizin und Parasitologie, 1975, Volume: 26, Issue:4

    Topics: Animals; Blood Proteins; Catalase; Cysteine; Erythrocytes; Female; Glucosephosphate Dehydrogenase; Glutamate Dehydrogenase; Glutamates; Glutathione; Glutathione Peroxidase; Glutathione Reductase; Malaria; Mice; Peptide Synthases; Plasmodium

1975
A family of erythrocyte binding proteins of malaria parasites.
    Proceedings of the National Academy of Sciences of the United States of America, 1992, Aug-01, Volume: 89, Issue:15

    Topics: Amino Acid Sequence; Animals; Antigens, Protozoan; Base Sequence; Carrier Proteins; Cloning, Molecular; Cysteine; DNA, Protozoan; Duffy Blood-Group System; Erythrocytes; Exons; Gene Library; Macaca mulatta; Malaria; Molecular Sequence Data; Multigene Family; Oligodeoxyribonucleotides; Plasmodium falciparum; Plasmodium knowlesi; Plasmodium vivax; Protozoan Proteins; Receptors, Cell Surface; Sequence Homology, Nucleic Acid

1992
A protective monoclonal antibody recognizes an epitope in the carboxyl-terminal cysteine-rich domain in the precursor of the major merozoite surface antigen of the rodent malarial parasite, Plasmodium yoelii.
    Journal of immunology (Baltimore, Md. : 1950), 1989, Oct-15, Volume: 143, Issue:8

    Topics: Amino Acid Sequence; Animals; Antibodies, Monoclonal; Antibodies, Protozoan; Antigen-Antibody Reactions; Antigens, Protozoan; Antigens, Surface; Base Sequence; Chromosome Deletion; Cysteine; Disulfides; Epitopes; Malaria; Male; Mice; Mice, Inbred BALB C; Molecular Sequence Data; Molecular Weight; Plasmodium yoelii; Protein Precursors; Recombinant Proteins

1989