cyclin-d1 and Protein-Energy-Malnutrition

cyclin-d1 has been researched along with Protein-Energy-Malnutrition* in 3 studies

Other Studies

3 other study(ies) available for cyclin-d1 and Protein-Energy-Malnutrition

ArticleYear
Malnutrition suppresses cell cycle progression of hematopoietic progenitor cells in mice via cyclin D1 down-regulation.
    Nutrition (Burbank, Los Angeles County, Calif.), 2014, Volume: 30, Issue:1

    Protein malnutrition (PM) often is associated with changes in bone marrow (BM) microenvironment leading to an impaired hematopoiesis; however, the mechanism involved is poorly understood. The aim of this study was to compare the cell cycle progression of hematopoietic stem cells (HSC) and hematopoietic progenitor cells (HPC) and evaluate the cell cycle signaling in malnourished mice to assess the mechanism of cell cycle arrest.. C57Bl/6J mice were randomly assigned in control and malnourished groups receiving normoproteic and hypoproteic diets (12% and 2% protein, respectively) over a 5-wk period. Nutritional and hematologic parameters were assessed and BM immunophenotypic analysis was performed. Cell cycle of HPC (Lin(-)) and HSC (Lin(-)Sca-1(+)c-Kit(+)) were evaluated after 6 h of in vivo 5-bromo-2'-deoxyuridine (BrDU) incorporation. Cell cycle regulatory protein expression of HPC was assessed by Western blot.. Malnourished mice showed lower levels of serum protein, albumin, glucose, insulin-like growth factor-1, insulin, and higher levels of serum corticosterone. PM also caused a reduction of BM myeloid compartment resulting in anemia and leukopenia. After 6 h of BrDU incorporation, malnourished mice showed G0-G1 arrest of HPC without changes of HSC proliferation kinetics. HPC of malnourished mice showed reduced expression of proteins that induce cell cycle (cyclin D1, cyclin E, pRb, PCNA, Cdc25a, Cdk2, and Cdk4) and increased expression of inhibitory proteins (p21 and p27) with no significant difference in p53 expression.. PM suppressed cell cycle progression mainly of HPC. This occurred via cyclin D1 down-regulation and p21/p27 overexpression attesting that BM microenvironment commitment observed in PM is affecting cell interactions compromising cell proliferation.

    Topics: Animals; cdc25 Phosphatases; Cell Cycle Checkpoints; Cell Proliferation; Cyclin D1; Cyclin E; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Down-Regulation; Energy Intake; Hematopoietic Stem Cells; Male; Mice; Mice, Inbred C57BL; Nutritional Status; Protein-Energy Malnutrition; Signal Transduction

2014
Immunohistochemical examination of the INK4 and Cip inhibitors in the rat neonatal cerebellum: cellular localization and the impact of protein calorie malnutrition.
    Brain research, 2000, Feb-07, Volume: 855, Issue:1

    Expression of the cyclin-dependent kinase inhibitors (CKIs) has been linked to the inhibition of cellular proliferation and the induction of differentiation. Based on structure function analysis, two distinct families of CDKIs, the INK4 and the Cip/Kip family have been identified. The INK4 family member p16(Ink4), and the Cip/Kip protein p27(Kip1) have been implicated in normal development of the CNS and cerebellum. Recent studies have suggested a functional inter-dependence between the CKI and the abundance of cyclin D1 in orchestrating growth factor-induced cellular proliferation. The neonatal rat cerebellum undergoes proliferative growth and differentiation, localized to distinct topographical regions and cell types. The cell type and the temporal profile of CKI expression during postnatal cerebellar development had not been described. The current studies determined the specific cerebellar cell types in which the CKIs were expressed during post natal development by co-staining for cell-type specific markers. p16(Ink4a) and p27(Kip1) immunostaining was identified in both neurons and glial cells, increasing progressively between postnatal days 6 to 13 into adulthood. By contrast, neuronal and glial cell p21(Cip1) staining was prominent at days 6-11 and decreased thereafter. Cyclin D1 was expressed in the proliferating external granular cells, with occassional staining in the molecular, and internal granular layers. Dual immunostaining demonstrated cyclin D1 within cells expressing CKI (p16(Ink4a), p21(Cip1),p27(Kip1)). Cerebellar cellular growth arrest, induced by protein-calorie malnutrition, inhibited cyclin D1 protein levels without affecting CKI immunostaining suggesting CKI do not mediate the developmental arrest. These results demonstrate that the CKIs are induced by differentiation cues in specific cell types with distinct kinetics in the developing cerebellum in vivo.

    Topics: Animals; Animals, Newborn; Blotting, Western; Cell Cycle Proteins; Cell Differentiation; Cerebellum; Cyclin D1; Cyclin-Dependent Kinase Inhibitor p16; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Cyclins; Female; Immunohistochemistry; Microtubule-Associated Proteins; Neuroglia; Neurons; Protein-Energy Malnutrition; Rats; Rats, Sprague-Dawley; Tumor Suppressor Proteins

2000
Regulation of cyclin dependent kinase inhibitor proteins during neonatal cerebella development.
    Brain research. Developmental brain research, 1998, Jun-15, Volume: 108, Issue:1-2

    The cyclin dependent kinase holoenzymes (CDKs), composed of catalytic (cdk) and regulatory (cyclin) subunits, promote cellular proliferation and are inhibited by cyclin dependent kinase inhibitor proteins (CDKIs). The CDKIs include the Ink4 family (p15Ink4b, p16Ink4a, p18Ink4c, p19Ink4d) and the KIP family (p21Cip1 and p27Kip1). The sustained induction of p21 and p18 during myogenesis implicates these CDKI in maintaining cellular differentiation. Herein we examined the CDK (cyclin D1, cdk5) and CDKI expression profiles during the first 24 days of postnatal rat cerebella development. Cdk5 abundance increased and cyclin D1 decreased from day 9 through to adulthood. The CDKIs increased transiently during differentiation. p27 increased 20-fold between days 4 and 24, whereas p21 rose twofold between 6 to 11 days. p19, p18 and p16 increased approximately two- to threefold, falling to low levels in the adult. Immunostaining of cyclin D1 was localized in the external granular cells, whereas p27, was found primarily in the Purkinje cells. The period of maximal differentiation between days 9 to 13 was associated with a change in p21 and p16 staining from the external granular and Purkinje cells to a primarily Purkinje cell distribution. Protein-calorie malnutrition, which was previously shown to arrest rat cerebella development, reduced cyclin D1 kinase activity and p27 levels. However, p16 and p21 levels were unchanged. We conclude that the CDKIs are induced with distinct kinetics in specific cell types and respond differentially to growth factors during cerebella development, suggesting discrete roles for these proteins in normal cerebella development.

    Topics: Animals; Animals, Newborn; Blotting, Western; Carrier Proteins; Cell Cycle Proteins; Cerebellum; Cyclin D1; Cyclin-Dependent Kinase 5; Cyclin-Dependent Kinase Inhibitor p15; Cyclin-Dependent Kinase Inhibitor p16; Cyclin-Dependent Kinase Inhibitor p18; Cyclin-Dependent Kinase Inhibitor p19; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Cyclin-Dependent Kinases; Cyclins; Enzyme Inhibitors; Female; Microtubule-Associated Proteins; Pregnancy; Protein Serine-Threonine Kinases; Protein-Energy Malnutrition; Rats; Rats, Sprague-Dawley; Tumor Suppressor Proteins

1998